首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
豆渣苯酚液化物合成热固性酚醛树脂的研究   总被引:1,自引:1,他引:0  
为了提高大豆豆渣的附加值,利用豆渣苯酚液化物与甲醛在碱性环境中进行反应,制取热固性酚醛树脂(PF)。考察了n(甲醛)/n(液化物)[即n(F)/n(L)]比值、n(氢氧化钠)/n(液化物)[即n(NaOH)/n(L)]比值、树脂化温度和树脂化时间对PF理化性能的影响;通过正交实验法,确定了树脂化合成的最佳工艺。研究结果表明,最佳树脂化合成的工艺条件为:n(F)/n(L)=1.8,n(NaOH)/n(L)=0.5,树脂化温度为72.5℃,树脂化时间为3h;将最佳工艺条件下制取的PF用于胶合板的压制,则所得胶合板的胶合强度符合GB/T9846-2004中Ⅱ类胶合板的标准要求。  相似文献   

2.
采用液化技术和树脂化技术,制备了橡胶籽壳/苯酚液化物(简称液化物);然后以此为原料,制备了胶合板用液化物PF(酚醛树脂)胶粘剂,并采用单因素试验法和正交试验法优选出制备液化物PF的最佳工艺条件。研究结果表明:当反应温度为90℃、n(甲醛)∶n(液化物)=2.0∶1.0、反应时间为2.0 h和n(氢氧化钠):n(液化物)=0.7∶1.0时,由液化物PF胶粘剂压制而成的胶合板,其湿态胶接强度(为1.36 MPa)相对最大,并且达到GB/T 9846—2004标准中I类胶合板的指标要求;液化物PF与纯PF的结构基本相似,但前者的固化温度略高于后者、热稳定性低于后者。  相似文献   

3.
在碱性条件下由竹材苯酚液化物和多聚甲醛制备出具有优良发泡性液化竹基酚醛树脂.考查了竹材液化物树脂化时间、温度、多聚甲醛与苯酚的物质的量比、氢氧化钠与苯酚物质的量比等因素对液化竹材酚醛树脂(BPE)黏度及其固含量的影响.结果表明,采用n(多聚甲醛)/n(苯酚)=1.2,树脂化时间为2 h,温度为70℃,n(氢氧化钠)/n...  相似文献   

4.
陆峻 《热固性树脂》2009,24(4):40-42
采用苯酚对三聚氰胺-甲醛树脂(MF)进行改性,研究了3种原料(苯酚、三聚氰胺和甲醛)不同配比下的合成产物的模塑料性能,优选出低酚摩尔分数(8%)的用于模塑料加工的苯酚改性蜜胺树脂(PMF)。该树脂中甲醛与三聚氰胺的物质的量比(F1/M)为1.75∶1,甲醛与苯酚的物质的量比(F2/P)为1.7∶1,甲醛和苯酚的物质的量之和与三聚氰胺物质的量比((F1+F2+P)/M)为2.5∶1。该树脂可提高模塑料的加工性能,降低加工能量损耗,改善制品的模塑性和耐冲击性。  相似文献   

5.
时君友  韩忠军 《粘接》2006,27(1):15-17
以苯酚、尿素、甲醛为原料采用合理的工艺进行了尿素对酚醛树脂改性,对其可行性进行了初步分析。试验结果表明,所合成的尿素改性酚醛树脂贮存性好;可以在低于酚醛树脂25℃的固化温度下固化;在相同的固化温度下,UPF树脂的固化速度要快于PF树脂;用尿素改性酚醛树脂压制桦木三合板,其所压制的胶合板的各项物理力学性能与常规PF树脂胶合板性能相近,能达到GB/T 9846-1988对I类胶合板理化性能的要求;板材中的甲醛释放量低于GB 18580-2001中的E1级的要求。由于尿素的加入降低了胶粘剂的成本,尿素改性酚醛树脂综合性能优于PF树脂。  相似文献   

6.
竹材液化物酚醛树脂胶固化及固化动力学研究   总被引:3,自引:2,他引:3  
采用非等温差示热量扫描DSC曲线方法探讨了竹材液化物酚醛树脂胶不同物质的量之比时的固化反应过程。在25~300℃温度范围内,运用Kissinger方程对不同的升温速率下竹材液化物酚醛树脂胶的DSC曲线进行了固化动力学研究。结果表明:随着甲醛配比的提高(苯酚与甲醛物质的量之比分别为1:1.3、1:1.6、1:1.8),竹材液化物酚醛胶的固化过程表观活化能逐渐减小,分别为64.60、58.36、57.12 kJ/mol;3种配比的竹材液化物酚醛胶的固化反应模型分别为:da/dt=1.30×105e-64600/RT(1-a)0.9054,da/dt=1.37×105e-58360/RT(1-a)0.8971和da/dt=1.44×105e-57120/RT(1-a)0.8959;随着甲醛配比的提高,利用外推法得出的静态(β=0 K/min)的特征固化温度TiTpTf均逐渐降低,结果与竹材液化物酚醛胶固化反应的表观活化能的大小顺序一致。  相似文献   

7.
以花生壳苯酚液化产物为原料,制备花生壳苯酚液化产物-尿素-甲醛(PLPUF)树脂胶黏剂。采用正交试验探讨了制备PLPUF树脂胶黏剂的最优配比,以提高其综合性能,结果表明:第一批尿素(U1)/第二批尿素(U2)物质的量比、液化产物(PL)/尿素(U)物质的量比以及液化产物和尿素总用量(PL+U)与甲醛(F)物质的量比为3:1、1:1.5和1:1是PLPUF树脂胶黏剂制备的最佳配比;此配比下胶合强度达到了0.83 MPa,含固体量为47.11%,游离甲醛的量为0.05%,以酚醛树脂胶黏剂为标准,PLPUF树脂胶黏剂能满足木材工业树脂的使用要求。PLPUF树脂在贮存过程中黏度逐渐上升,贮存5~15 d胶合强度为0.87~1.15 MPa,22 d后胶合强度降低至0.74 MPa,仍可满足使用条件。PLPUF树脂的FT-IR图中出现酰胺C=O和C—N等伸缩振动峰,表明尿素参与反应、改性树脂,而加入固化剂前后树脂的FT-IR吸收峰相同,结合DSC曲线表明固化剂的加入不改变树脂结构,但可以改善PLPUF树脂的固化过程,降低固化温度和固化反应热。  相似文献   

8.
0005021反应型酚醛涂料:EP945497t欧洲专利公开英]/芬兰:Dyooresi:、oy(Lippo,‘e,,,Juha等)一1999.9,29尸10页、一Fll998/672(1998.3.25):IPC C09D 161/06 该涂料是一种用碱性树脂组合物浸涂处理的胶结材料,所用组合物含有甲醛/苯酚(RP)摩尔比为l一3的甲阶酚醛树脂,占液态树脂计算量0.4%一5.0%的醋、醋的衍生物或其混合物,并且树脂组合物的碱度比液体树脂计斧最过量l%。该发明还涉及酚醛涂料的制备方法以及该涂料在各种板材制品表面的涂装应用、在板材制品和/或金属板表面粘合其他涂层、胶合板和纤维薄板的应用、作为其他涂层的底涂…  相似文献   

9.
苯酚-尿素-甲醛三元共缩聚树脂合成工艺的研究   总被引:1,自引:0,他引:1  
徐亮  杨建洲 《化学与粘合》2006,28(3):197-199
针对脲醛树脂在制板过程以及人造板材在使用过程中不断释放甲醛。危害人体健康的环保问题,以及耐水、耐老化性能差的缺点。以苯酚、尿素和甲醛为原料,采用高温(90℃)缩聚反应合成苯酚-尿素-甲醛共缩聚树脂(PUF胶黏剂),缩短了反应时间,提高了耐水、耐老化性能,且游离甲醛含量〈O.3%,游离苯酚含量〈0.5%。对树脂的结构和性能进行全面的分析,得出当甲醛、尿素、苯酚摩尔比为10:8:1时树脂性能最佳,压制的胶合板力学性能好,板材甲醛释放量达到GB18580—2001中E2级水平。  相似文献   

10.
为从源头上降低UF树脂及其胶合板材的甲醛释放对环境和人体健康所造成的危害,选用乙二醛(G)取代甲醛(F)与尿素(U)反应,制备乙二醛-尿素(GU)树脂。用差示扫描量热分析(DSC)方法研究了原料物质的量比、反应pH、反应时间、反应温度、pH调节剂对所合成GU树脂固化性能的影响规律;并用不同原料物质的量比的GU树脂制备刨花板并测定了其各项性能。结果表明,GU树脂的较优合成条件为:在弱酸性条件下,乙二醛与尿素物质的量比(G/U)=1.2∶0~1.4∶1.0,反应温度70~80℃,反应时间3h;此条件下合成的GU树脂胶合的刨花板内结合强度IB达到0.44MPa、弹性模量MOE达2298MPa、静曲强度MOR为10.5 MPa,且无甲醛释放。  相似文献   

11.
Wood-based resol resins were prepared from both water- and sodium hydroxide (NaOH)-catalyzed liquefied phenolated wood. The effects of various reaction parameters, e.g. the concentrations of phenol and formaldehyde, temperature, and time, on the extent of yield, free phenol content, molecular weight as well as the gluability of the resol resins have been evaluated. As far as the yield, free phenol content, and molecular weight are concerned, the optimum conditions of resol resin preparation were found to be a phenol : wood weight ratio of 4 : 6, a formaldehyde : phenol mole ratio of 1.5 : 1, a temperature of 82.5°C, and time 3 h. However, these optimum conditions changed when the performance of the adhesives was considered in terms of the adhesive bond strengths for plywood joints. The yield, molecular weights, polydispersity, and gluability of resol resins prepared from water-catalyzed liquefied wood were lower compared with those prepared from NaOH-catalyzed ones. In most cases, the dry-bond strengths of the experimental plywood joints exceeded the minimum Japan Agricultural Standard (JAS) values. On the other hand, except at a higher formaldehyde: phenol ratio (i.e. 2.0 : 1 mole ratio), the plywood joints of all samples delaminated during 'boil-dry-boil' cyclic treatments. However, both dry- and wet-bond strengths of the plywood joints could be improved to exceed standard values by using an additional crosslinking agent, e.g. poly(methylene (polyphenyl isocyanate)) (polymeric MDI). The adhesive perfomance of the wood-based resol resins was explained on the basis of the adhesion between wood veneers and resol resin adhesives.  相似文献   

12.
A liquefied wood‐based resol resin was prepared with excellent yield by a reaction of liquefied wood and formaldehyde under alkaline conditions. The effects of various reaction parameters on the extent of the yield of the resol resin, unreacted phenol content, and viscosity were investigated. Milder resol resinification conditions were required as compared to those used in conventional methods. The liquefied wood‐based resol resin was successfully applied to produce phenolic foam using appropriate combinations of foaming agents. Diisopropyl ether with a relatively higher boiling temperature was suitable for the foaming of liquefied wood‐based resol resin. Hydrochloric acid and poly(ethylene ether) of sorbitan monopalmitate were used as a catalyst and a surfactant, respectively. The obtained foams showed satisfactory densities and compressive properties, comparable to those of foams obtained from conventional resol resin. Foams with low density were obtained by the blending of liquefied wood‐based resol resin and conventional resol resin. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 468–472, 2002; DOI 10.1002/app.10018  相似文献   

13.
In this study, alkaline lignin (AL), dealkaline lignin (DAL), and lignin sulfonate (SL) were liquefied in phenol with sulfuric acid (H2SO4) or hydrochloric acid (HCl) as the catalyst. The phenol‐liquefied lignins were used as raw materials to prepare resol‐type phenol‐formaldehyde resins (PF) by reacting with formalin under alkaline conditions. The results show that phenol‐liquefied lignin‐based PF resins had shorter gel time at 135°C and had lower exothermic peak temperature during DSC heat‐scanning than that of normal PF resin. The thermo‐degradation of cured phenol‐liquefied lignin‐based PF resins was divided into four temperature regions, similar to the normal PF resin. When phenol‐liquefied lignin‐based PF resins were used for manufacturing plywood, most of them had the dry, warm water soaked, and repetitive boiling water soaked bonding strength fitting in the request of CNS 1349 standard for Type 1 plywood. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
To prepare phenolic resol resin, corn bran (CB) was liquefied in the presence of phenol and the liquefied CB was condensed with formaldehyde under alkaline condition. From NMR spectra of phenolated CB and phenolated CB–based resol resin, it was found that phenol was reacted with depolymerized CB components and the phenolated CB was methylolated by condensation with formaldehyde. Molecular weight distribution was divided into a high molecular weight zone, attributed mainly to phenolated CB, and a low molecular weight zone, which was attributed to the condensation reactants of formaldehyde and the unreacted phenol of liquefied CB. When reaction conditions became severe, a high molecular weight zone was increased. Formaldehyde/unreacted phenol of liquefied CB molar ratio most affected the change of a low molecular weight zone. To reduce the viscosity of the phenolated CB–based resol resin, a milder condensation condition was required compared with that for preparing the conventional resol resin. Properties of the resol resin were comparable to those of conventional resol resin for plywood manufacture. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1365–1370, 2003  相似文献   

15.
Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three‐necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac‐type liquefied wood/phenol/formaldehyde (LWPF) resins: LWPF1 (the atmospheric reactor) and LWPF2 (the sealed reactor). The LWPF1 resin had a higher solid content and higher molecular weight than the LWPF2 resin. The cure kinetic mechanisms of the LWPF resins were investigated with dynamic and isothermal differential scanning calorimetry (DSC). The isothermal DSC data indicated that the cure reactions of both resins followed an autocatalytic mechanism. The activation energies of the liquefied wood resins were close to that of a reported lignin–phenol–formaldehyde resin but were higher than that of a typical phenol formaldehyde resin. The two liquefied wood resins followed similar cure kinetics; however, the LWPF1 resin had a higher activation energy for rate constant k1 and a lower activation energy for rate constant k2 than LWPF2. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Lignin separated from soda-spent liquor of rice straw pulping was used to replace some of the phenol condensed with formaldehyde to form phenol-formaldehyde resins (PF). The phenol-lignin-formaldehyde resin was obtained through two stages, namely adduct and polymerization stage. In the adduct stage, lignin: phenol ratio, time and temperature were studied. The produced phenol-lignin was condensed with formaldehyde to produce phenol-lignin-formaldehyde resins. The ratio of phenol-lignin to formaldehyde during the condensation, temperature and time of polymerization were also studied. In each case the yield, viscosity, solubility, and the softening point of the resins were determined. Lignin can replace up to 25% of the phenol without affecting the physical properties of the produced phenol-lignin-formaldehyde resins. IR-spectra showed a structural similarity of phenol formaldehyde and phenol-lignin-formaldehyde resins.  相似文献   

17.
制备了不同尿素用量的系列尿素改性酚醛(PUF)树脂体系(当尿素用量为苯酚质量的0、25%、43%、66%时分别记为PF、PUF-1、PUF-2、PUF-3),并将其用于制备胶合板,研究树脂在胶合板加工过程中的变化。结果表明:PUF-3树脂与桉木和杨木的接触角为79.6°和81.1°,小于PF树脂的,PUF对桉木相容性比杨木优良,PF树脂则相反;对4种树脂进行DSC分析显示,PF、PUF-1、PUF-2、PUF-3固化速率最大温度分别为146.8、171.4、171.8和171.8℃;PUF-3和面粉共混体系的流变行为显示该共混体系110℃开始发生固化反应,(130±5)℃为较合适的热压温度;对热压前后PF和PUF-3进行热重分析,结果发现PUF的耐高温性能优于PF,热压后形成的结构耐热性也更好;4种树脂压制的胶合板性能达到E0级,甲醛释放量均小于0.5mg/L,胶合强度分别为1.42、1.11、0.98和0.92MPa。  相似文献   

18.
The wood powder of Cryptomeria japonica (Japanese cedar) was liquefied in phenol, with H2SO4 and HCl as a catalyst. The liquefied wood was used to prepare the liquefied wood‐based novolak phenol formaldehyde (PF) resins by reacting with formalin. Furthermore, novolak PF resins were mixed with wood flour, hexamethylenetetramine, zinc stearate as filler, curing agent, and lubricating agent, respectively, and hot‐pressed under 180 or 200°C for 5 or 10 min to manufacture moldings. The results showed that physicomechanical properties of moldings were influenced by the hot‐pressing condition. The molding made with hot‐pressing temperature of 200°C for 10 min had a higher curing degree, dimensional stability, and internal bonding strength. The thermal analysis indicated that using a hot‐pressing temperature of 180°C was not sufficient for the liquefied wood‐based novolak PF resins to completely cure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号