首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cuspidine is a well-defined ternary compound with a stability field in the subsystem CaF2–CaSiO3–Ca2SiO4. Cuspidine is easily formed by solid-state reactions in the subsystem mentioned and is stable above its apparently congruent fusion point if heated in welded platinum containers. Above 1450° decomposition and the formation of a mixture of CaF2 and Ca2SiO4 is observed. Cuspidine also is easily formed by secondary reactions in solid mixtures of the subsystem CaF2–CaSiO3 and in ternary mixtures of these with free SiO2 if heated in open crucibles. The existence of double compounds of CaF2 and CaSiO3 is not confirmed.  相似文献   

2.
In this work the corrosion behaviors of zirconia refractory (partially MgO-stabilized zirconia) was investigated in CaO–SiO2–MgO–CaF2 slag with varying CaF2 content at 1873 K. To figure out the corrosion mechanism, the characteristics of present slag at high temperature were examined in terms of melting temperature and vaporization behaviors. Corrosion experiment and melting temperature measurement were carried out by heating microscope (HM) and the vaporization phenomenon was investigated by thermo gravimetry–differential scanning calorimetry. After experiment, the corroded interfaces of zirconia refractory by slag were analyzed by scanning electron microscope-energy dispersive spectroscopy and electron probe microanalysis. With an addition of CaF2, three different layers were formed at the interface of slag and zirconia refractory. Furthermore, the corrosion behaviors of zirconia refractory were found to be continuously accelerated with an increase of CaF2 which facilitated the dissolution of intermediate compound. On the other hand, melting temperature of CaO–SiO2–MgO–CaF2 slag showed no continuous decrease with an increase of CaF2. Also, considerable vaporization of fluoride gas was occurred in high CaF2 containing slag during HM experiment which might cause a gradual change of slag composition and also environmental pollution. From the results, present study suggested that a proper amount of CaF2 should be added when it is used for enhancing refining capacity of slag in order not to cause any severe damage of zirconia-based refractory by slag.  相似文献   

3.
The dissolution rates of silicon nitride (Si3N4) ceramics into CaOAl2O3SiO2 slags were investigated by using a rotating specimen method in the temperature range of 1773–1873 K. Dissolution rates in the present study increased as the revolution speed and temperature increased and decreased as the SiO2 content of the slags increased. The nitrogen content of the slags increased after the Si3N4 ceramics had been immersed into them. The slags contained two types of nitrogen ions—N3− and CN-—because a graphite crucible was used for the experiment. N3− ions were confirmed in all the slags that were used in the present work; the CN- content was much lower than that of the N3− ions, except in the slag without SiO2. Based on those results, Ficks law of diffusion was used to analyze the dissolution rates. The dissolution mechanism of the Si3N4 ceramics into CaO–Al2O3SiO2 slags has been discussed in this paper.  相似文献   

4.
In this work, the liquidus of synthetic CaO–SiO2–MgO–Al2O3–CrO x slags is evaluated in the industrially relevant compositional domain. Equilibrium experiments are carried out at 1500°C and partial oxygen pressure ( p O2) 10−11.04 atm, and at 1600°C and p O2=10−10.16 and 10−9.36 atm. The studied basicities (CaO/SiO2) are 1.2 and 0.5. Al2O3 levels range from 0 to 30 wt%. Oversaturated liquid is sampled and phase relations are measured with quantitative electron probe microanalysis–wavelength dispersive spectroscopy (EPMA–WDS). The results are compared with the commercially available FactSage thermodynamic databases. Qualitative agreement is always obtained. Also a good quantitative agreement is found at the higher basicity, especially for the spinel liquidus. A minor but systematic deviation can be observed for the eskolaite liquidus. At the lower basicity, the calculated phase diagram deviates strongly from the experimental results, probably due to missing ternary interactions in the database.  相似文献   

5.
Calcia- and magnesia-partially-stabilized zirconia samples were corroded under static and dynamic conditions in three slags from the CaO–FeO–SiO2 system. Low–basicity and high–FeO slags corroded tht samples by leaching magnesia from the cubic phase in the specimen, causing its destabilization and ultimate dissolution. However, a higher–basicity slag which proved the most corrosive of the three promoted bulk dissolution of the cubic phase instead, the rate of which was controlled by the thickness of the adjacent slag boundary layer. The levels of sample corrosion both at and below the slag line are used to illustrate the effects of experimental variables, including slag composition, specimen density, and slag motion.  相似文献   

6.
The system CaO–chromium oxide in air is reinvestigated and the existence of intermediate phases with chromium in oxidation states >3+ (Ca5Cr3O12, Ca3(CrO4)2, and Ca5(CrO4)3) confirmed. Under reducing conditions these phases are unstable. A metastable, polymorphic form of calcium chromite, δ -CaCr2O4, is observed. In the CaO-rich section of the CaO–Al2O3–Cr2O3 system a ternary intermediate phase, chrome-haüyne, Ca4[(Al,Cr3+)6O12](Cr6+O4), coexists with calcium chromate and calcium aluminate phases. In air, low melting temperatures are preserved in all assemblages containing calcium chromate phases. Under reducing conditions a new ternary phase, Ca6Al4Cr2O15, coexists with CaO, CaCr2O4, chrome-haüyne, and calcium aluminate phases. The influence of chromium oxide additions on the solidus temperatures of the CaO–Al2O3 system is insignificant.  相似文献   

7.
Aluminosilicate and silicate glass-ceramics were obtained from controlled devitrification of CaO–Al2O3–SiO2 glassy systems starting from Spanish and Italian coal fly ash or Italian municipal incinerator slag mixed with other byproducts, such as glass cullet and dolomite. The nucleation mechanism and the crystallization kinetics were investigated by thermal, diffractometric, and microstructural measurements. Moreover, the experimentally observed devitrification and the identification of the crystalline phases formed were compared with the indications derived from Ginsberg, Raschin-Tschetveritkov, and Lebedeva diagrams used for petrological glass-ceramics. All the glasses showed a good crystallization tendency with the formation of dendritic pyroxene and acicular wollastonite together with feldspar and iron spinels starting from the surface. The activation energy values for crystallization ranging from 472 to 832 kJ ·mol−1 were found to be close to those typical for aluminosilicate glasses; moreover, the possibility to vitrify and devitrify up to 100 wt% of slag and up to 40–50 wt% of ash mixed with glass cullet and dolomite makes the vitrification treatment a suitable disposal procedure.  相似文献   

8.
Equilibrium ratios Cr2+/Cr3+ of chromium oxide dissolved in CaO–chromium oxide–Al2O3–SiO2 melts have been determined by analysis of samples equilibrated at 1500°C under strongly reducing conditions ( p o2= 10−9.56 to 10−12.50 atm). The majority of the chromium is divalent (Cr2+) under these conditions and Cr2+/Cr3+ ratios at given constant oxygen pressures decrease with increasing basicity of the melts, expressed as CaO/SiO2 ratios. In addition, Cr2+/Cr3+ ratios, at a given CaO/SiO2 ratio, are relatively unaffected by the amount of Al2O3 present.  相似文献   

9.
10.
It has been shown that polydimethylsiloxane (PDMS)–CaO–SiO2–TiO2 and poly(tetramethylene oxide) (PTMO)–CaO–TiO2 hybrids form apatite on their surfaces in a simulated body fluid (SBF) and show mechanical properties similar to those of human cancellous bones. In the present study, changes, caused by soaking in SBF, were measured in the mechanical properties of PDMS–CaO–SiO2–TiO2 hybrids with different CaO and TiO2 contents and PTMO–CaO–TiO2 hybrids with different CaO contents. Significant decreases in the strength and strain at failure of the hybrids were observed for the PDMS–CaO–SiO2–TiO2 hybrids with high CaO or TiO2 contents and PTMO–CaO–TiO2 hybrids with a high CaO content after soaking in SBF for 4 w. This indicates that incorporation of a large amount of CaO component into the hybrids should result in the deterioration of the hybrids in the body environment.  相似文献   

11.
In this final paper of a series on viscosity in the system CaO—MgO-Al2O3SiO2 data are presented for melts containing 60 and 65% SiO2. There also are diagrammatic presentations of the systems of isokoms at intervals on planes parallel to the zero alumina, zero lime, and zero magnesia faces of the tetrahedron, the apices of which represent 100% of each of the four oxides that make up the system.  相似文献   

12.
13.
Results are presented of a study of phase equilibria among crystalline and liquid phases in the quaternary system CaO–MgO-Al2O3–SiO2 at Al2O3 contents greater than 35%. Equilibrium diagrams shown are for the five triangular joins CaAl2Si2O3-Ca2Al2SiO7-MgAl2O4, Ca2Al2SiO7-MgAl2O4-Al2O3, CaAl2Si2O8-MgO-Al2O3, CaAl2Si2O8-Mg2SiO4-MgAl2O4, and CaAl2Si2O8-MgO-Mg2SiO4. The composition and nature of the four quaternary peritectic points and the relationships of univariant lines and primary phase volumes are discussed.  相似文献   

14.
By a combination of solid-state sintering and quenching experiments the validity of calcium hexaluminate as a stable phase and the extent of its primary field in the system CaO–Al2O3–SiO2 have been established. The size of the primary field is considerably reduced from that suggested by earlier work. The anorthite-corundum-calcium hexaluminate invariant point has been relocated at 28.0% CaO, 39.7% Al2O2, and 32.3% SiO2 and at 1405°± 5°C.  相似文献   

15.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

16.
A furnace for use in conjunction with the X-ray spectrometer was developed which was capable of heating small powdered specimens in air to temperatures as high as 1850°C. This furnace was also used for the heating and quenching of specimens in air from temperatures as high as 1850°C. An area of two liquids coexisting between 20 and 93 weight % TiO2 above 1765°± 10°C. was found to exist in the system TiO2–SiO2, which is in substantial agreement with the previous work of other investigators. The area of immiscibility in the system TiO2–SiO2 was found to extend well into the system TiO2–ZrO2–SiO2. The two liquids were found to coexist over a major portion of the TiO2 (rutile) primary-phase area with TiO2 (rutile) being the primary crystal beneath both liquids. The temperature of two-liquid formation in the ternary was found to fall about 80°C. with the first additions of ZrO2 up to 3%. With larger amounts of ZrO2 the change in the temperature of the boundary of the two-liquid area was so slight as to be within the limits of error of the temperature measurement. Primary-phase fields for TiO2 (rutile), tetragonal ZrO2, and ZrTiO4 were found to exist in the system TiO2–ZrO2–SiO2. SiO2 as high cristobalite is known to exist in the system TiO2–ZrO2–SiO2.  相似文献   

17.
The influence of the additive SO3 on the phase relationships in the quaternary system CaO-SiO2-Al2O3-Fe2O3 was investigated by observing the change of volume ratio of 3CaOSiO2 (C3S) to 2CaOSiO2 (C2S) + CaO (C) in the sintered material with the increase of SO3 content. The primary phase volume of C3S in the quaternary phase diagram shrank with the increase of SO3 and disappeared when the SO3 content exceeded 2.6 wt% in the sintered material. Changes in the peritectic reaction relationship between CaO (C), 2CaOSiO2 (C2S), 3CaOSiO2 (C3S), 3CaOAl2O3 (C3A), 4CaOAl2O3Fe2O3 (C4AF), and liquid were also observed and discussed.  相似文献   

18.
E-glass fibers were coated with a 15CaO–15BaO–20SiO2–50TiO2 thin film by the sol–gel method. Mechanical and chemical tests were performed on coated and uncoated fibers in cement and cement extract solutions to investigate the interactions between cement and gel-glass film. The results show that the resistance of E-glass fibers to the alkali cement medium is enhanced by the 15CaO–15BaO–20SiO2–50TiO2 coating. The significant roles of TiO2, CaO, and BaO in the protection fibers from the alkaline attack of cement are described. Some evidence is presented that the alkali corrosion of the coated fibers results in the formation of a thick and compact Ti film that suppresses further corrosion reaction.  相似文献   

19.
The relative partial molar enthalpies, Δ SiO2, of SiO2 in SiO2–M2O (M = Li, Na, K and Cs) binary and SiO2–CaO–Al2O3ternary melts were directly measured by drop-solution calorimetry at 1465 K and 1663 K. Δ SiO2 changes from exothermic to endothermic as silica content increases, confirming the tendency toward immisciblity seen from activity measurements. It is concluded that Δ SiO2 is negative due to acid-base reactions and charge-coupled substitutions when the melt is composed of fewer Q 4 and more Q 3 and Q 2 species, but positive due to structural strain when the melt is composed of mostly Q 4 species. The Δ SiO2 obtained by calorimetry is a useful measure of basicity, when comparing different alkali and alkaline earth oxides.  相似文献   

20.
We have investigated the evolution of the structure of nano–macro porous CaO–Na2O–P2O5–SiO2 bioactive glass–ceramics by Fourier transform infrared (FTIR) and Raman spectroscopies, and X-ray diffraction (XRD). A controlled devitrification, followed by a chemical leaching treatment is used to produce a multimodal distribution of nano/macro pores that are expected to improve cell attachment. Data show that the leaching process removes the sodium- and calcium-containing crystalline phases that are formed during the ceramming heat treatment. The primary Si–O peaks in the infrared spectra blue shift with leaching, indicating that the sample becomes SiO2 rich. In parallel, the fraction of nonbridging oxygen decreases. These results suggest a restructuring of the glass network far below the glass transition temperature. The stresses from leaching, capillary forces, and subsequent restructuring develop and grow, eventually producing cracks in the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号