首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Saccharomyces cerevisiae Rad4 and Rad23 proteins are required for the nucleotide excision repair of UV light-damaged DNA. Previous studies have indicated that these two DNA repair proteins are associated in a tight complex, which we refer to as nucleotide excision repair factor 2 (NEF2). In a reconstituted nucleotide excision repair reaction, incision of UV-damaged DNA is dependent on NEF2, indicating a role of NEF2 in an early step of the repair process. NEF2 does not, however, possess an enzymatic activity, and its function in the damage-specific incision reaction has not yet been defined. Here we use a DNA mobility shift assay to demonstrate that NEF2 binds specifically to UV-damaged DNA. Elimination of cyclobutane pyrimidine dimers from the UV-damaged DNA by enzymatic photoreactivation has little effect on the affinity of NEF2 for the DNA, suggesting that NEF2 recognizes the 6-(1, 2)-dihydro-2-oxo-4-pyrimidinyl)-5-methyl-2,4-(1H,3H)-pyrimidinedione photoproducts in the damaged DNA. These results highlight the intricacy of the DNA damage-demarcation reaction during nucleotide excision repair in eukaryotes.  相似文献   

2.
DNA double-strand break repair through the RAD52 homologous recombination pathway in the yeast Saccharomyces cerevisiae requires, among others, the RAD51, RAD52, and RAD54 genes. The biological importance of homologous recombination is underscored by the conservation of the RAD52 pathway from fungi to humans. The critical roles of the RAD52 group proteins in the early steps of recombination, the search for DNA homology and strand exchange, are now becoming apparent. Here, we report the purification of the human Rad54 protein. We showed that human Rad54 has ATPase activity that is absolutely dependent on double-stranded DNA. Unexpectedly, the ATPase activity appeared not absolutely required for the DNA repair function of human Rad54 in vivo. Despite the presence of amino acid sequence motifs that are conserved in a large family of DNA helicases, no helicase activity of human Rad54 was observed on a variety of different DNA substrates. Possible functions of human Rad54 in homologous recombination that couple the energy gained from ATP hydrolysis to translocation along DNA, rather than disruption of base pairing, are discussed.  相似文献   

3.
The most versatile strategy for repair of damage to DNA, and the main process for repair of UV-induced damage, is nucleotide excision repair. In mammalian cells, the complete mechanism involves more than 20 polypeptides, and defects in many of these are associated with various forms of inherited disorders in humans. The syndrome xeroderma pigmentosum (XP) is associated with mutagen hypersensitivity and increased cancer frequency, and studies of the nucleotide excision repair defect in this disease have been particularly informative. Many of the XP proteins are now being characterized. XPA binds to DNA, with a preference for damaged base pairs. XPC activity is part of a protein complex with single-stranded DNA binding activity. The XPG protein is a nuclease.  相似文献   

4.
Base excision repair (BER) constitutes a ubiquitous excision repair mechanism, which is responsible for the removal of multiple types of damaged and inappropriate bases in DNA. We have employed a yeast cell-free system to examine the biochemical mechanism of the BER pathway in lower eukaryotes. Using uracil-containing DNA as a model substrate, we demonstrate that yeast BER requires Apn1 protein, an Escherichia coli endonuclease IV homolog. In extracts of an apn1 deletion mutant, the 5'-incision at AP (apurinic/apyrimidinic) sites is not detectable, supporting the notion that yeast contains only one major 5'-AP endonuclease. The processing of the 5'-deoxyribose phosphate moieties was found to be a rate-limiting step. During BER of uracil-containing DNA, repair patch sizes of 1-5 nucleotides were detected, with single nucleotide repair patches predominant.  相似文献   

5.
The bioactivity, i.e., bone-bonding ability, of 26 glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2 was studied in vivo. This investigation of bioactivity was performed to establish the compositional dependence of bioactivity, and enabled a model to be developed that describes the relation between reactions in vivo and glass composition. Reactions in vivo were investigated by inserting glass implants into rabbit tibia for 8 weeks. The glasses and the surrounding tissue were examined using scanning electron microscopy (SEM), light microscopy, and energy-dispersive X-ray analysis (EDXA). For most of the glasses containing < 59 mol % SiO2, SEM and EDXA showed two distinct layers at the glass surface after implantation, one silica-rich and another containing calcium phosphate. The build-up of these layers in vivo was taken as a sign of bioactivity. The in vivo experiments showed that glasses in the investigated system are bioactive when they contain 14-30 mol % alkali oxides, 14-30 mol % alkaline earth oxides, and < 59 mol % SiO2. Glasses containing potassium and magnesium bonded to bone in a similar way as bioactive glasses developed so far.  相似文献   

6.
O4-Alkylthymines have been implicated as potential carcinogenic DNA lesions. We have studied the effects of O4-methylthymine, O4-ethylthymine, and O4-n-propylthymine in a model system in which a single lesion was located at a defined position on a SV40-based shuttle vector and have found large differences in the effects of these lesions in repair-proficient and nucleotide excision repair-deficient cells. In repair-competent human HeLa cells, normal fibroblasts, and XP-A (2OS) revertant cells, all 3 residues were highly mutagenic; a mutation frequency of approximately 20% was found for both O4-methylthymine and O4-ethylthymine, whereas that of O4-n-propylthymine was approximately 12%. These frequencies were independent of the activity of the O6-alkylguanine DNA alkyltransferase. All three O4-alkylthymines induced T-->C transitions exclusively. In nucleotide excision repair-deficient XP-A cells, however, these lesions were not mutagenic but strongly inhibited plasmid replication (> 90%). These results indicate that O4-alkylthymines are efficiently recognized by the nucleotide excision repair system and cause a complete cessation of plasmid replication if this system is deficient. Nevertheless, proficiency in the nucleotide excision repair pathway correlates with a high frequency of mutation induction by these lesions.  相似文献   

7.
8.
9.
The ATPase activity of the catalytic part of ATP synthases is inhibited by free Mg2+, even though MgATP is the substrate. Here we show that the inhibition of the MgATPase activity of chloroplast coupling factor 1 deficient in its epsilon subunit (CF1-epsilon) by Mg2+ is complex. The hydrolysis of MgATP by CF1-epsilon that contains tightly bound ADP, but no bound Mg2+, is initially rapid and decreases within about 1 min to a steady-state rate. The bound MgADP content of CF1-epsilon was varied. The initial fast phase of MgATP hydrolysis is eliminated when the molar ratio of MgADP to CF1-epsilon approaches 2. Loosely bound Mg2+ also affects the initial kinetics of the enzyme that contains bound MgADP. At molar ratios of bound MgADP to enzyme in excess of 1, the initial ATPase activity was low and reached the steady state after about 30 s. Free Mg2+ in the assay mix also inhibited steady-state ATP hydrolysis by all forms of the enzyme. The results are consistent with a model in which two Mg2+ bind cooperatively, probably to the dissociable nucleotide-binding sites on CF1-epsilon. Thus, four different nucleotide-binding sites may be involved in the inhibition of the MgATPase activity of CF1-epsilon. Three of these sites are potentially catalytic, and the fourth may be regulatory. The exchange of bound trinitrophenyl-ADP induced by the addition of MgATP or CaATP was found to be fast enough for the site to be involved in catalysis.  相似文献   

10.
Repair of the exocyclic DNA adduct propanodeoxyguanosine (PdG) was assessed in both in vivo and in vitro assays. PdG was site-specifically incorporated at position 6256 of M13MB102 DNA, and the adducted viral genome was electroporated into repair-proficient and repair-deficient Escherichia coli strains. Comparable frequencies of PdG --> T and PdG --> A mutations at position 6256 were detected following replication of the adducted genomes in wild-type E. coli strains. A 4-fold increase in the frequencies of transversions and transitions was observed in E. coli strains deficient in Uvr(A)BC-dependent nucleotide excision repair. A similar increase in the replication of the adduct containing strand was observed in the repair-deficient strains. No change in the frequency of targeted mutations was observed in strains deficient in one or both of the genes coding for 3-methyladenine glycosylase. Incubation of purified E. coli Uvr(A)BC proteins with a duplex 156-mer containing a single PdG adduct resulted in removal of a 12-base oligonucleotide containing the adduct. Incubation of the same adducted duplex with Chinese hamster ovary cell-free extracts also resulted in removal of the adduct. PdG was a better substrate for repair by the mammalian nucleotide excision repair complex than the bacterial repair complex and was approximately equal to a thymine-thymine dimer as a substrate for the former. The results of these in vivo and in vitro experiments indicate that PdG, a homolog of several endogenously produced DNA adducts, is repaired by the nucleotide excision repair pathway.  相似文献   

11.
12.
The nucleotide excision repair (NER) pathway of eukaryotes involves approximately 30 polypeptides. Reconstitution of this pathway with purified components is consistent with the sequential assembly of NER proteins at the DNA lesion. However, recent studies have suggested that NER proteins may be pre-assembled in a high molecular weight complex in the absence of DNA damage. To examine this model further, we have constructed a histidine-tagged version of the yeast DNA damage recognition protein Rad14. Affinity purification of this protein from yeast nuclear extracts resulted in the co-purification of Rad1, Rad7, Rad10, Rad16, Rad23, RPA, RPB1, and TFIIH proteins, whereas none of these proteins bound to the affinity resin in the absence of recombinant Rad14. Furthermore, many of the co-purifying proteins were present in approximately equimolar amounts. Co-elution of these proteins was also observed when the nuclear extract was fractionated by gel filtration, indicating that the NER proteins were associated in a complex with a molecular mass of >1000 kDa prior to affinity chromatography. The affinity purified NER complex catalyzed the incision of UV-irradiated DNA in an ATP-dependent reaction. We conclude that active high molecular weight complexes of NER proteins exist in undamaged yeast cells.  相似文献   

13.
14.
Human replication protein A (RPA) is a three-subunit protein complex (70-, 34-, and 11-kDa subunits) involved in DNA replication, repair, and recombination. Both the 70- (p70) and 34-kDa (p34) subunits interact with Xeroderma pigmentosum group A complementing protein (XPA), a key protein involved in nucleotide excision repair. Our deletion analysis indicated that no particular domain(s) of RPA p70 was essential for its interaction with XPA, whereas 33 amino acids from the C terminus of p34 (p34Delta33C) were necessary for the XPA interaction. Furthermore, mutant RPA lacking the p34 C terminus failed to interact with XPA, suggesting that p34, not p70, is primarily responsible for the interaction of RPA with XPA. RPA stimulated the interaction of XPA with UV-damaged DNA through an RPA-XPA complex on damaged DNA sites because (i) the RPA mutant lacking the C terminus of p34 failed to stimulate an XPA-DNA interaction, and (ii) the ssDNA binding domain of RPA (amino acids 296-458) was necessary for the stimulation of the XPA-DNA interaction. Two separate domains of p70, a single-stranded DNA binding domain and a zinc-finger domain, were necessary for RPA function in nucleotide excision repair. The mutant RPA (RPA:p34Delta33C), which lacks its stimulatory effect on the XPA-DNA interaction, also poorly supported nucleotide excision repair, suggesting that the XPA-RPA interaction on damaged DNA is necessary for DNA repair activity.  相似文献   

15.
XPG is a member of the FEN-1 structure-specific endonuclease family. It has 3'-junction cutting activity on bubble substrates and makes the 3'-incision in the human dual incision (excision nuclease) repair system. To investigate the precise role of XPG in nucleotide excision repair, we mutagenized two amino acid residues thought to be involved in DNA binding and catalysis, overproduced the mutant proteins using a baculovirus/insect cell system, and purified and characterized the mutant proteins. The mutation D77A had a modest effect on junction cutting and excision activity and gave rise to uncoupled 5'-incision by mammalian cell-free extracts. The D812A mutation completely abolished the junction cutting and 3'-incision activities of XPG, but the excision nuclease reconstituted with XPG (D812A) carried out normal 5'-incision at the 23rd-24th phosphodiester bonds 5' to a (6-4) photoproduct without producing any 3'-incision. It is concluded that Asp-812 is an active site residue of XPG and that in addition to making the 3'-incision, the physical presence of XPG in the protein-DNA complex is required non-catalytically for subsequent 5'-incision by XPF-ERCC1.  相似文献   

16.
Two closely related genes, EXO1 and DIN 7, in the budding yeast Saccharomyces cerevisiae have been found to be sequence homologs of the exo1 gene from the fission yeast Schizosaccharomyces pombe . The proteins encoded by these genes belong to the Rad2/XPG and Rad27/FEN-1 families, which are structure-specific nucleases functioning in DNA repair. An XPG nuclease deficiency in humans is one cause of xeroderma pigmentosum and those afflicted display a hypersensitivity to UV light. Deletion of the RAD2 gene in S. cerevisiae also causes UV hypersensitivity, due to a defect in nucleotide excision repair (NER), but residual UV resistance remains. In this report, we describe evidence for the residual repair of UV damage to DNA that is dependent upon Exo1 nuclease. Expression of the EXO1 gene is UV inducible. Genetic analysis indicates that the EXO1 gene is involved in a NER-independent pathway for UV repair, as exo1 rad2 double mutants are more sensitive to UV than either the rad2 or exo1 single mutants. Since the roles of EXO1 in mismatch repair and recombination have been established, double mutants were constructed to examine the possible relationship between the role of EXO1 in UV resistance and its roles in other pathways for repair of UV damaged DNA. The exo1 msh2 , exo1 rad51 , rad2 rad51 and rad2 msh2 double mutants were all more sensitive to UV than their respective pairs of single mutants. This suggests that the observed UV sensitivity of the exo1 deletion mutant is unlikely to be due to its functional deficiencies in MMR, recombination or NER. Further, it suggests that the EXO1 , RAD51 and MSH2 genes control independent mechanisms for the maintenance of UV resistance.  相似文献   

17.
In the D171G/D230A mutant generated at conserved aspartate residues in the Exo1 and Exo2 sites of the 3'-5' exonuclease domain of the yeast mitochondrial DNA (mtDNA) polymerase (pol-gamma), the mitochondrial genome is unstable and the frequency of mtDNA point mutations is 1500 times higher than in the wild-type strain and 10 times higher than in single substitution mutants. The 10(4)-fold decrease in the 3'-5' exonuclease activity of the purified mtDNA polymerase is associated with mismatch extension and high rates of base misincorporation. Processivity of the purified polymerase on primed single-stranded DNA is decreased and the Km for dNTP is increased. The sequencing of mtDNA point mutations in the wild-type strain and in proofreading and mismatch-repair deficient mutants shows that mismatch repair contributes to elimination of the transitions while exonucleolytic proofreading preferentially repairs transversions, and more specifically A to T (or T to A) transversions. However, even in the wild-type strain, A to T (or T to A) transversions are the most frequent substitutions, suggesting that they are imperfectly repaired. The combination of both mismatch repair and proofreading deficiencies elicits a mitochondrial error catastrophe. These data show that the faithful replication of yeast mtDNA requires both exonucleolytic proofreading and mismatch repair.  相似文献   

18.
19.
An ionizing radiation-induced DNA lesion, thymine glycol, is removed from DNA by a thymine glycol DNA glycosylase with an apurinic/apyrimidinic (AP) lyase activity encoded by the Escherichia coli endonuclease III ( nth ) gene and its homolog in humans. Cells from Cockayne syndrome patients with mutations in the XPG gene show approximately 2-fold reduced global repair of thymine glycol. Hence, I decided to investigate the molecular mechanism of the effect of XPG protein observed in vivo on thymine glycol removal by studying the interactions of XPG protein and human endonuclease III (HsNTH) protein in vitro and the effect of XPG protein on the activity of HsNTH protein on a substrate containing thymine glycol. The XPG protein stimulates the binding of HsNTH protein to its substrate and increases its glycosylase/AP lyase activity by a factor of approximately 2 through direct interaction between the two proteins. These results provide in vitro evidence for a second function of XPG protein in DNA repair and a mechanistic basis for its stimulatory activity on HsNTH protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号