共查询到16条相似文献,搜索用时 77 毫秒
1.
2.
3.
基于贝叶斯推断LSSVM的滚动轴承故障诊断 总被引:4,自引:3,他引:4
针对传统最小二乘支持向量机分类器的参数选择具有随意性和不确定性等不足,采用贝叶斯推断方法通过三级分层推断优化确定最小二乘支持向量机的各参数,有效提高了最小二乘支持向量机的建模效率.将基于贝叶斯推断最小二乘支持向量机分类方法应用于滚动轴承故障诊断中,实验仿真结果表明该方法能有效地识别滚动轴承的故障,且训练时间和测试时间均小于传统最小二乘支持向量机方法。 相似文献
4.
针对区间无绝缘轨道电路故障类型复杂、诊断精度低等问题,从故障特征提取和特征分类两方面出发,提出了一种深度
置信网络(DBN)和海洋捕食者算法(MPA)优化最小二乘支持向量机(LSSVM)的故障诊断方法。 首先,将集中监测数据和状态
标签输入到 DBN,以半监督的方式进行降维和特征提取,从而挖掘轨道电路不同故障特征信息;然后,采用 MPA 智能算法对
LSSVM 的惩罚因子和核函数参数进行寻优并建立最优 MPA-LSSVM 诊断模型;最后,将 DBN 提取的特征样本导入诊断模型进
行轨道电路的故障分类识别。 DBN-MPA-LSSVM 诊断模型充分利用了 DBN 在特征提取过程中的逐层提取优势以及 LSSVM 在
解决小样本情况下高维模式识别的优势。 实验验证与对比分析表明,DBN-MPA-LSSVM 模型测试集准确率为 98. 33%,MPA 优
化算法较 PSO、GWO、GA 算法模型诊断准确率分别提高了 6. 11%、3. 89%、3. 33%,平均准确率为 97. 98%,为基于数据驱动的轨
道电路故障诊断技术提供了一种新的方法。 相似文献
5.
针对天然气管道气体压力超声检测模式识别问题,提出了对原始信号进行预处理去除冗余信息,然后对信号进行变分模态分解(variational modal decomposition,VMD)提取最优本征模态函数(intrinsic model functin,IMF)对信号进行重构,接着对处理好的信号进行连续小波变换(con... 相似文献
6.
基于LSSVM和证据理论的电力系统暂态稳定评估 总被引:1,自引:0,他引:1
提出了一种基于最小二乘支持向量机和D-S证据理论的信息融合模型的电力系统暂态稳定评估方法。选取了稳态特征量、故障初始时刻特征量和暂态特征量构成不同组输入特征,采用最小二乘支持向量机分类器进行暂态稳定评估,再对子分类器的结果在输出空间利用D-S证据理论实现决策级融合,以提高电力系统暂态稳定评估的可靠性。利用电力系统综合分析程序(PSASP)对EPRI-36节点系统进行了仿真计算,结果表明:可以提高训练效率以及分类的准确性。 相似文献
7.
依据压力传感器样本,提出了一种采用最小二乘支持向量机(LS-SVM)辨识传感器逆模特征的校正压力传感器非线性误差的方法,该方法将实测数据由径向基函数把非线性逼近问题转化为线性逼近问题,不需逆模型函数形式的先验知识,能够保证得到的极值解就是局最优解,具有较好的泛化能力。实验结果表明,采用该方法校正后的传感器的检测精度可达到1%,效果令人满意。 相似文献
8.
为响应国家节能环保要求,石灰石湿法脱硫技术在火电厂广泛应用。但火电厂的石灰石浆液制备系统存在自动化水平低,控制参数调节缺乏理论数据支持等问题,导致系统费电费料,石灰石浆液成品密度不可靠。为解决控制参数寻优困难问题,对工况进行分类,并使用最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)模型对历史数据进行控制参数与同类制浆量数据拟合,最后使用搜索法对各工况模型进行耗电量寻优,提取出该类工况下的最佳控制参数配比。对某600 MW火电机组制浆系统历史数据进行仿真实验,实验结果验证了该方案的有效性、可靠性,且寻优结果可以为制浆系统自动控制运行提供调参指导。 相似文献
9.
10.
对风速的准确预测能有效减轻风电场对整个电网的不利影响,同时能提高风电场在电力市场中的竞争能力。首先提出一种基于快速独立分量分析算法和改进最小二乘支持向量机的风速预测模型,对运用fast ICA算法对风速时间序列进行多层分解,得到一系列的独立分量;然后运用改进最小二乘支持向量机模型对分解后的各独立分量风速进行预测;最后对各预测结果进行叠加作为最终的预测风速。算例结果表明,该预测模型能准确进行短期风速的预测。 相似文献
11.
为了提高风电负荷预测精度,保证风电场资源得到有效利用,提出了基于改进最小二乘支持向量机和预测误差校正相结合的方法。首先引入提升小波分解原始数据,可以有效提取其主要特征,从而克服风电场的随机性。然后采用最小二乘支持向量机对分解后的信号做预测,保证了预测精度。接着用误差校正方式修正预测结果,减少了较大误差点的出现,提高了预测结果的稳定性。最后,通过某风电场预测结果表明,基于提升小波和最小二乘支持向量机的方法可以提高预测的精度,误差预测的方法也可以有效地校正预测结果。仿真结果验证了该方法用于风电负荷预测是有效可行的。 相似文献
12.
稀疏在线无偏置最小二乘支持向量机的预测控制 总被引:2,自引:0,他引:2
针对非线性预测控制中的预测模型,设计了稀疏在线无偏置最小二乘支持向量机(SONB-LSSVM),并提出了基于SONB-LSSVM的有约束单步预测控制算法。在每个控制周期,该SONB-LSSVM递推地学习新样本,并删除贡献最小样本。该样本删除技巧能提高学习样本集的多样性和代表性;与ONB-LSSVM相比,SONB-LSSVM的泛化性能受输入信号频率影响较小。控制量由Brent优化方法计算。由于SONB-LSSVM能及时学习过程动态新特性,该预测控制方法具有良好的自适应能力.液位控制仿真表明,在多种波形的期望输出并有扰动情况下该预测控制方法都是有效的。 相似文献
13.
为提高短期负荷预测精度,提出一种基于自适应噪声的完全集合经验模态分解(CEEMDAN)-样本熵(SE)和深度信念网络(DBN)的短期负荷组合预测模型。利用CEEMDAN-样本熵将原始负荷序列分解为多个特征互异的子序列,计算各子序列的样本熵,将熵值相近的子序列重组得到新序列,降低了原始非平稳序列对预测精度造成的影响并减小计算规模;综合考虑各新序列的周期特性和影响因素对每个新序列分别构建不同的DBN预测模型,利用DBN克服了浅层神经网络特征提取不充分及初始参数难确定的问题;最后将预测结果叠加得到最终预测值。仿真结果表明,该组合预测模型的平均绝对百分比误差和均方根误差分别为1.18%和87.91 MW,相比于BP、DBN、EMD-DBN负荷预测模型具有更高的预测精度。 相似文献
14.
油中溶解气体分析是变压器绝缘故障诊断的重要方法。为了提高分类的准确度和可靠性,应用最小二乘支持向量机理论建立了变压器的分类模型。该模型以变压器油中5种主要特征气体作为输入量,以7种变压器状态作为输出量,选用了径向基核,使用了一对一的多分类算法,充分发挥了支持向量机具有较高泛化能力的优势。通过大量的实例分析,并将诊断结果与IEC三比值法、改良三比值法和BP神经网络的诊断结果相比较,表明基于径向基核的最小二乘支持向量机在变压器故障诊断中具有更高的准确率。 相似文献
15.
针对当前瓶底圆心定位方法精度不高、瓶底防滑纹区域缺陷易误检等问题,利用瓶底防滑纹的几何特征,提出一种改进的基于变权重随机圆拟合的瓶底定位算法,首先采用重心法对瓶底圆心进行快速预定位,再采用变权重随机圆拟合法实现瓶底精定位。然后检测瓶底图像疑似缺陷区域,并提取区域面积、轮廓长度、圆形度、灰度方差和灰度均值等特征,采用支持向量机算法进行分类决策,检测出缺陷。实验表明,瓶底定位误差小于6个像素,缺陷检测准确率为92.7%,基本满足实际生产精度的要求。 相似文献
16.
针对复杂工况下输气管道的泄漏检测与定位准确率低、效率不高这一难题,结合等温定位法和Runge-Kutta法(龙格-库塔法)的原理及优缺点提出改进的变步长精细Runge-Kutta法。根据管道中的气体流动过程及温度的不同处理方式,以管道的温度、压力和流速为参数确定步长求得管道从首端到末端各截面的参数,通过测量管道首末端的流量和压力可判定出输气管道泄漏的位置。通过对非等温气体管道的仿真实验,以泄漏率和定位精度作为评价指标,对等温定位法和变步长精细Runge-Kutta法定位效果进行了对比分析。仿真结果表明,对于非等温气体管道的泄漏,变步长精细Runge-Kutta法的检测与定位精度准效率高。 相似文献