首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 968 毫秒
1.
针对短时交通流量序列的非平稳性和随机性的特征,为提高短时交通流预测精度和收敛速度,提出一种基于自适应变分模态分解(VMD)和结合注意力机制层的双向长短时记忆网络(BiLSTM)的组合预测模型。首先,使用自适应变分模态分解将时空交通流量序列分解为一系列有限带宽模态分量,细化了交通流信息,降低了非平稳性,提升了建模的精确度;其次,利用结合注意力机制的双向长短时记忆网络挖掘分解后交通流量序列中的时空相关性,从而揭示其时空变化规律,从而进一步提升了建模精确度,并且利用改进Adam算法进行网络权值优化,以加速了预测网络的训练收敛速度;最后,将各模态分量预测值叠加求和作为最终交通流预测值。实验结果表明,使用模态分解的预测模型预测性能明显优于未使用模态分解的预测模型,同时自适应VMD-Attention-BiLSTM预测模型相较于EEMD-Attention-BiLSTM预测模型,均方根误差降低了47.1%,该组合预测模型提升了预测精度,并且能够快速预测交通流量时间序列。  相似文献   

2.
基于 FEEMD-SAPSO-BiLSTM 组合模型的 短时交通流预测   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高短时交通流的预测精度和预测速度,基于交通流量序列的不平稳性和随机性,提出了快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)和自然选择自适应变异粒子群算法(selection adaptive particle swarm optimization,SAPSO)优化双向长短时记忆网络(bidirection long short-term memory,BiLSTM)相结合的预测模型.首先,利用FEEMD将原始不平稳的交通流量序列分解成多个较平稳的固有模态分量(intrinsic mode function,IMF)和残差分量(resdiue,Res),并滤除掉噪声部分,提高建模精度;其次,引入复合多尺度排列熵(composite multiscale permutation entropy,CMPE)检测交通流量子序列的随机性并根据随机性的相近程度对其进行聚类重组,简化模型的构建,提高预测精度;然后,对重组后的子序列使用BiLSTM进行预测,并利用SAPSO优化BiLSTM的权值和阈值,进一步提高组合模型的预测精度和预测速度;最后,将各子序列预测值叠加得到最终的预测值.实验结果表明,FEEMD-SAPSO-BiLSTM组合模型的均方根误差比FEEMD-PSO-BiLSTM和SAPSO-BiLSTM组合模型分别降低了22.9%和54.3%,收敛速度方面,FEEMD-SAPSO-BiLSTM明显快于FEEMD-PSO-BiLSTM模型.因此在预测短时交通流上,提出的组合模型提高了预测精度和预测速度,达到了期望的预测效果.  相似文献   

3.
针对时间序列规律难以捕捉且具有高度非平稳性特征导致的预测精度较低问题,提出了一种基于二次分解和注意力机制优化门控循环单元(GRU-attention)的时间序列预测模型。首先利用完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)将时间序列分解为若干个特征互异的模态分量,并依据样本熵量化各分量复杂度。其次采用变分模态分解(variational modal decomposition, VMD)弱化高熵值分量的非平稳性特征。接着使用注意力机制优化GRU预测模型。最后对各分量建立GRU-attention模型进行预测,将各分量预测结果叠加获得最终结果。通过实验分析证明,所提出的模型与其他模型相比能够较好的捕捉序列的复杂规律、降低序列的非平稳性并且具有较高的预测性能,其平均绝对百分比误差达到了2.9%,决定系数达到了0.891。  相似文献   

4.
郑雨 《电工技术》2024,(6):32-35
针对传统光伏功率超短期预测算法精度不高的问题,提出一种基于改进变分模态分解的长短期记忆网络的光伏功率预测模型。首先利用Pearson相关系数分析光伏功率影响因素,其次利用基于蚁群算法优化的变分模态分解对光伏功率序列进行分解,并将各模态分量级气象因素作为长短期记忆网络的输入,得到预测功率。仿真结果表明,与BPNN、LSTM模型相比,所提出的预测模型具有较高的预测精度,可为光伏电站功率预测提供参考。  相似文献   

5.
针对高速公路短时交通流预测问题中待测站点上下游的交通流量时空信息利用不充分,且上下游观测点选择不合理的问题,提出了基于观测点遴选并充分挖掘时空信息的短时交通流预测方法.首先使用KNN算法对待测站点的上下游节点进行遴选,将与待测站点欧氏距离较小的上下游节点历史数据组织成包含时空信息的二维矩阵;然后使用卷积神经网络提取空间特征,将所得的特征向量送入双向LSTM模型进行时间信息的提取并完成最终预测.结果 表明,经过观测点遴选后的KNN-CNN-BiLSTM预测模型准确率较遴选前提升了19.3%,实现了交通流时空信息的充分挖掘,是一种有效精准的短时交通流预测模型.  相似文献   

6.
童宇轩  金超  李灿 《江苏电器》2023,(11):26-32
针对风电功率存在间歇性、非线性和波动性而难以准确预测的问题,提出一种遵循“序列分解-网络预测-序列重构”的风电功率预测模型。针对风电场集群中的不同风电机组出力特性曲线,使用迭代自组织数据分析聚类算法(ISODATA)聚类得到典型出力曲线;利用自适应噪声完全集成经验模态分解(CEEMDAN)算法对聚类得到的原始风电序列数据进行模态分解,减少数据波动所带来的预测误差;建立各模态分量的双向长短期记忆网络(BiLSTM)预测模型,并使用改进麻雀搜索算法(ISSA)优化网络参数,再将各模态分量的预测结果叠加得到风电功率的最终预测结果。算例结果表明,所提预测模型的预测精度相比其他对比模型更高,且有着更好的泛化能力。  相似文献   

7.
基于VMD和LSTM的超短期风速预测   总被引:1,自引:0,他引:1       下载免费PDF全文
风速具有非线性、非平稳性以及随机性等特点。为提高超短期风速预测精度,提出一种基于变分模态分解(VMD)和长短期记忆网络(LSTM)的超短期风速预测新方法。首先利用变分模态方法将风速序列分解成一系列不同的子模态以降低原始数据的复杂度和非平稳性对预测精度的影响。再对得到的风速子模态分别建立LSTM模型,进行超前1步风速预测。最后叠加各子模态的预测结果得到最终预测风速。对比分析结果显示,该模型的预测精度优于其他多种典型风速预测模型,该模型在超短期风速预测方面表现出较好的性能。  相似文献   

8.
针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用改进金豺算法对双向长短期记忆网络的参数进行优化,并对每个子序列建立预测模型;最后,组合各模型结果得到最终预测值。实验结果表明,本文模型预测精度更高,与真实值拟合度更好。  相似文献   

9.
基于改进EEMD-SE-ARMA的超短期风功率组合预测模型   总被引:1,自引:0,他引:1       下载免费PDF全文
针对风力发电功率时间序列具有非线性和非平稳性的特性,提出了一种改进的集成经验模态分解(Modified Ensemble Empirical Mode Decomposition,MEEMD)-样本熵(Sample Entropy,SE)-ARMA的风电功率超短期组合预测模型。将EEMD分解中添加的白噪声信号改为添加绝对值相等的正负两组白噪声信号,并将MEEMD分解过程中的EMD步骤使用端点延拓和分段三次埃尔米特插值进行改进,形成一种改进的EEMD分解算法(即MEEMD)。利用MEEMD-SE将风力发电功率时间序列分解为一系列复杂度差异明显的风电子序列;针对每一个不同的子序列建立适当的ARMA预测模型;将各预测分量进行叠加重构,得到最终的风电功率预测值。通过算例分析及与其他几种预测模型预测结果的对比,证明MEEMD-SE-ARMA组合预测模型可以有效地提高风力发电功率超短期预测的精度。  相似文献   

10.
张旭  张宏立  王聪 《电测与仪表》2020,57(22):33-39
为提高风速时间序列预测精度,基于风速时间序列的随机性和波动性,提出互补集合经验模态分解(Complete Ensemble Empirical Mode Decomposition,CEEMD)和正交粒子群算法(Orthogonal Particle Swarm Optimization,OPSO)优化Chebyshev基函数神经网络的混合风速时间序列预测模型(CEEMD-OPSO-Chebyshev)。利用CEEMD将原始风速时间序列分解成有限个固有模态分量,避免了传统的分解信号重建中冗余噪声残留问题。同时引入排列熵分析各分量内在特性进行聚类,提出基于OPSO优化算法的Chebyshev神经网络风速预测模型,利用OPSO优化预测网络权值,进一步提高预测精度,通过对实际采样的风电场风速时间序列进行预测分析,结果可得所提出的混合预测模型与传统预测模型相比能得到更高的预测精度。  相似文献   

11.
针对碳交易过程中碳价序列的非线性和非平稳性,提出一种基于多模式分解、样本熵、鲸鱼优化(whale optimization algorithm,WOA)和长短期记忆神经网络(long short-term memory,LSTM)的组合预测模型.首先,使用奇异谱分解、变分模态分解和完全集合经验模态分解,分别分解原始碳价...  相似文献   

12.
欧旭鹏  任涛  王玉鹏  张凯 《陕西电力》2023,(3):31-38,52
提出了一种CNN-Attention-BiGRU网络模型,以及采用ISSA优化网络模型超参数的短期风电功率预测方法。首先,设计CNN-Attention-BiGRU深度学习网络,利用CNN-Attention提取数据特征,再利用BiGRU对时间序列的预测;然后,采用ISSA优化CNN-Attention-BiGRU网络超参数,提高模型的预测精度;最后,采用甘肃省某风电场数据集进行验证该预测方法,结果表明,该预测模型有效地提高了预测精度和输出结果的稳定性。  相似文献   

13.
为提高短期负荷预测精度,提出一种基于自适应噪声的完全集合经验模态分解(CEEMDAN)-样本熵(SE)和深度信念网络(DBN)的短期负荷组合预测模型。首先利用CEEMDAN-样本熵将原始负荷序列分解为多个特征互异的子序列,计算各子序列的样本熵,将熵值相近的子序列重组得到新序列,降低了原始非平稳序列对预测精度造成的影响并减小计算规模;随后综合考虑各新序列的周期特性和影响因素对每个新序列分别构建不同的DBN预测模型,利用DBN预测模型克服了浅层神经网络特征提取不充分及初始参数难确定的问题;最后将预测结果叠加得到最终预测值。仿真结果表明,该组合预测模型有效提高了预测精度。  相似文献   

14.
准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算法(Genetic Algorithm, GA)、广义回归神经网络(General Regression Neural Network, GRNN)和长短期记忆模型(Long Short-Term Memory,LSTM)的短期风速变权组合预测模型(Variable Weighted Hybrid Model, VWHM)。首先运用集合经验模态分解技术,将原始风速时间序列分解成多个不同的子序列。然后运用套索算法对各个子序列的数据变量进行筛选,提取代表性变量作为预测输入。最后利用GA的全局优化能力,对由GRNN和LSTM构成的组合预测模型的权重系数进行移动样本自适应变权求解,并加权得到最终预测结果。仿真结果表明,所提的变权组合模型比单一模型以及传统组合模型具有更高的预测精度,且在风速预测中具有优越性。  相似文献   

15.
高精度网络流量预测是现代网络智能管理的基础,针对支持向量机在网络流量预测建模过程中的参数优化难题,以改善网络流量预测结果为目标,提出了改进灰狼算法优化支持向量机的网络流量预测模型.首先收集网络流量历史数据,并对数据进行相空间重构、归一化等预处理,然后引入改进灰狼算法快速搜索到全局最优支持向量机的相关参数,并根据最优参数...  相似文献   

16.
单一模型在进行超短期负荷预测时会因负荷波动而导致预测精度变差,针对此问题,提出一种基于深度学习算法的组合预测模型。首先,采用变分模态分解对原始负荷序列进行分解,得到一系列的子序列。其次,分别采用双向长短期记忆网络和优化后的深度极限学习机对每个子序列进行预测。然后,利用改进Q学习算法对双向长短期记忆网络的预测结果和深度极限学习机的预测结果进行加权组合,得到每个子序列的预测结果。最后,将各个子序列的预测结果进行求和,得到最终的负荷预测结果。以某地真实负荷数据进行预测实验,结果表明所提预测模型较其他模型在超短期负荷预测中表现更佳,预测精度达到98%以上。  相似文献   

17.
阳晓明  吕红芳  朱辉 《电测与仪表》2020,57(17):72-78,98
针对大规模分布式电源并网引起的配电网路拓扑结构及潮流分布变化,现有配电网重构算法不足以应对,提出一种改进的人工鱼群算(AFSA)对含分布式电源的配电网进行重构求解。针对AFSA收敛速度慢、觅食方向固定、灵活性低、陷入局部最优及搜索精度较低的缺陷,采用全方位觅食行为,并结合差分进化与AFSA,提高算法灵活性,增加种群多样性,使算法易于跳出局部极值,提高收敛精度。最后通过算例分析,验证所提算法有效。结果表明,与其它智能算法相比,改进的AFSA的收敛精度和收敛速度更佳,能够很好的应用于含分布式电源配电网的重构求解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号