首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
随着目前空战武器装备的迅猛发展,对于高空高速大机动目标的轨迹预测越来越占据重要的战略地位。为了解决目前存在的目标轨迹预测不足的问题,本文提出了融合小波分解(wavelet decomposition, WD)和长短期记忆(long short term memory, LSTM)网络的模型来对机动目标的轨迹进行预测。首先,通过小波分解将输入的轨迹时间序列分解为1个低频分量(CD1)和3个高频分量(CA1,CA2,CA3)。然后,利用长短期记忆网络对时间序列处理的优势进行分量预测。最后,将分量预测结果进行重构并与原始轨迹进行对比验证,结果表明所提模型对于轨迹预测具有较高的精确度。为了排除实验结果的偶然性,本文用两组数据进行验证。通过对比实验显示,所提模型与其他两种模型相比预测误差更小。  相似文献   

2.
针对变电站铅酸蓄电池容量预测模型存在的预测准确率低、泛化能力差等问题,提出一种基于Dropout优化算法和长短期记忆LSTM(long short-term memory)神经网络相结合的容量预测模型。该模型以LSTM神经网络为基础,结合变电站蓄电池充放电特性,将长时间跨度的蓄电池运行数据作为模型的输入,建立多层级LSTM预测模型来提升预测结果的准确率。同时基于Dropout优化算法完成LSTM预测模型的训练,提升模型的泛化能力。工程实际应用表明,相较于传统的LSTM神经网络和BP神经网络,改进模型在长时间跨度预测时具有更高的准确率和更好的泛化能力。  相似文献   

3.
准确预测火场环境变化有助于精准掌握火情的发展趋势,保障人员的安全。由于火场环境多参数并存、耦合关系复杂,且具有时序性和非线性,难以建立准确的预测模型,因此提出了一种基于改进哈里斯鹰算法的自注意机制长短期记忆网络模型,实现了对火场环境数据的精准预测。首先,将Logistic映射策略、余弦权重因子、高斯扰动策略引入哈里斯鹰优化算法,丰富算法的种群多样性、平衡其全局探索和局部开发能力、提高算法的收敛精度。然后,利用改进后的哈里斯鹰优化算法对自注意机制长短期记忆网络模型中的超参数进行优化,基于优化后的参数对火场环境进行预测。仿真结果表明,基于改进后的哈里斯鹰优化算法的自注意机制长短期记忆网络模型拟合效果更好,具有更高的预测精度。  相似文献   

4.
实现电力设备温度的准确预测对于保障电力系统安全和提高维修效率具有重要意义.传统预测方法无法满足高精度的预测要求,提出一种基于改进型长短期记忆(long short-term memory,LSTM)神经网络的电力设备温度预测方法,利用去池化的卷积神经网络(convolutional neural networks,CN...  相似文献   

5.
针对锂电池使用过程中存在容量回升造成非平稳的容量退化趋势,造成模型的预测精度容易受到干扰的问题,提出一种基于变分模态分解(VMD)与贝叶斯优化(BO)的长短期记忆神经网络(LSTM)的锂电池剩余寿命预测方法。首先,通过变分模态分解将原始容量退化序列进行分解,得到有限个模态分量;然后对分解之后的分量进行降噪、重构;最后,使用贝叶斯优化的长短期记忆神经网络算法对处理之后的数据进行寿命预测,获得最终的锂电池剩余寿命(RUL)预测结果。通过CALCE中心的锂离子电池数据集进行实验,所提出的VMD-BO-LSTM锂电池组合预测模型具有较高的预测精度与稳定性,实验采用的电池均方根误差的平均值小于7%,且优于其他预测模型。  相似文献   

6.
新能源发电的推广和使用加剧了用电高峰期电网供需矛盾,对电力用户的负荷模式进行识别可以为负荷参与调峰决策提供支持.为提高用电负荷模式辨识准确率,提出一种基于改进粒子群(IPSO)算法优化长短期记忆(LSTM)神经网络的用电负荷模式识别模型.通过引入多样化初始参数、动态非线性权重和淘汰机制等措施,改善了粒子群算法的寻优能力,实现对LSTM的关键参数寻优,确定LSTM神经网络的最优参数组合.实验结果表明,该方法可以有效提高模型的准确率,同时节省模型的训练时间.  相似文献   

7.
阶梯式碳交易机制以及优化调度模型求解算法是进行园区综合能源系统(community integrated energy system,CIES)优化调度的重要因素,现有文献对这两个因素的考虑不够全面。为此,文中在考虑阶梯式碳交易机制的基础上,提出采用近端策略优化(proximal policy optimization,PPO)算法求解CIES低碳优化调度问题。该方法基于低碳优化调度模型搭建强化学习交互环境,利用设备状态参数及运行参数定义智能体的状态、动作空间及奖励函数,再通过离线训练获取可生成最优策略的智能体。算例分析结果表明,采用PPO算法得到的CIES低碳优化调度方法能够充分发挥阶梯式碳交易机制减少碳排放量和提高能源利用率方面的优势。  相似文献   

8.
针对锅炉受热面积灰将会降低传热效率和安全性,采用清洁因子作为健康指标来监测锅炉受热面健康状况,并且提出融合经验模态分解(EMD)和长短期记忆网络(LSTM)的模型来预测未来锅炉积灰.经验模态分解可以将时间序列分解为一系列频域稳定的本征模态函数,长短期记忆网络拥有记忆功能,它能够通过学习来挖掘时间序列之间隐藏的长期依赖关...  相似文献   

9.
随着电动汽车的大规模发展,公共充电桩运行数量和充电量逐年增长。然而,充电桩运行始终存在故障频发、运维难度大和维修成本高等问题,并且传统故障检测方法效率低下。因此提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合网络电动汽车充电桩运行状态预测方法,可以实现对电动汽车充电桩运行状况的综合评估。在特征数据输入阶段,对充电桩运行状态的关键指标进行分析,通过CNN提取运行状态影响因素的特征量,再利用LSTM判断和预测充电桩运行状态,从而实现对充电桩潜在故障的预警。试验结果表明,该方法预测准确率高、实用性强,能较准确地反映和预测充电桩的运作状态,可实际用于充电桩故障预测与运维检修。  相似文献   

10.
提出了一种基于核主成分分析(KPCA)方法和运用了Dropout策略的长短时记忆神经网络(LSTM)的轴承剩余寿命预测方法.首先,提取了振动信号的有效值、最大值、峰峰值、峭度等14个时域特征指标.然后,利用KPCA方法融合轴承振动信号时域特征指标得到若干的主成分.提取若干主成分之中的第一主成分来评估研究对象的性能退化状...  相似文献   

11.
为了实现短期风速的精准预测,提出了一种基于秃鹰搜索算法优化长短时记忆神经网络的短期风速预测方法。将风速、风向、温度和气压作为特征量,采用秃鹰搜索(bald eagle search,BES)算法对长短时记忆神经网络(long short term memory,LSTM)的隐含层单元数量、正则化系数和初始学习率三个超参数进行优化,建立基于BES-LSTM的短期风速预测模型。采用实际风电场相关数据进行仿真分析,并与其他风速预测方法进行对比,结果表明,本文所提BES-LSTM模型预测结果的方均根误差、平均相对误差和可决系数分别为0.182、3.742%和0.992,各项指标均优于PSO-LSSVM模型和SSA-ELM模型,短期风速预测效果更好。  相似文献   

12.
为了准确预测电力负荷并提高电力系统调节和调度的灵活性、准确性,提出了基于差分自回归滑动平均和长短期记忆神经网络的短期负荷联合模型预测方法,以避免单一预测模型可能难以满足预测准确需求的情况。首先,使用差分自回归滑动平均和长短期记忆神经网络单一模型对短期电力负荷开展预测;然后,使用改进的粒子群优化算法对联合模型权重进行寻优;最后,利用最优权重将单一模型预测结果进行合并得到最终的预测结果。验证结果表明,所建立的联合模型能够对短期电力负荷进行准确的预测,且联合模型的预测精度要优于差分自回归滑动平均、长短期记忆神经网络和BP神经网络等单一模型,具有一定的工程应用价值。  相似文献   

13.
由于热连轧带钢卷取温度控制过程存在强非线性和时变性等因素影响,导致卷取温度控制精度和卷取命中率低。提出一种基于改进鲸鱼算法优化长短期记忆神经网络的方法,加入自适应参数优化和混合变异策略并融合小生境技术得到小生境技术混合变异策略的改进鲸鱼优化算法,建立改进鲸鱼算法优化LSTM的卷取温度预测模型,并与其他模型进行对比。仿真实验表明,在10个测试函数中,同其他先进算法相比,NMWOA算法具有更好的搜索能力和寻优精度;在卷取温度模型预测中,NMWOA LSTM模型同其他4种模型相比,卷取温度高精度命中率达到9750%,提高了卷取温度的预测精度。  相似文献   

14.
滚动轴承是机械设备中的重要零件,其工作状态直接关系着设备的运行,一旦发生故障会引起整个设备的正常运行,甚至引发重大的安全事故,因此,对其剩余寿命预测对设备的健康管理具有重要意义.提出了一种基于自编码-长短时记忆网络(autoencoder-long short term memory,AELSTM)迁移学习(transfer learning,TL)的滚动轴承剩余寿命预测方法,首先采用自动编码器自动提取源域中原始振动信号中的特征,再构建双层LSTM模型对剩余寿命进行预测,通过源域中训练获得AELSTM模型,再用目标域中的数据对AELSTM模型训练,完成对模型参数的微调,最后用调整好的模型对目标域中的数据进行预测.通过参数共享和微调两种方法,大大简化了模型在目标域上的训练过程.试验结果表明,在同轴承不同工况下,所提出模型相比于其他4种迁移学习方法的均方根误差分别降低了45.9%、58.9%、42.8%以及83.8%;在不同轴承不同工况下,所提出模型的均方根误差分别降低了16.9%、18.9%、11.7%以及8.9%.  相似文献   

15.
轴承作为旋转机械设备的重要部件之一,利用监测数据对其开展性能退化评估及剩余寿命预测,对于提高设备可靠性、降低维修成本至关重要.针对传统数据驱动方法在特征提取中过度依赖先验知识和专家经验,未能有效利用时间序列数据中的中长期依赖关系进行建模等问题,提出了一种基于卷积神经网络(CNN)和双向长短期记忆(BLSTM)网络的端到...  相似文献   

16.
采用长短期记忆深度学习模型的工业负荷短期预测方法   总被引:1,自引:0,他引:1  
工业负荷不同于其他电力负荷, 受气温、时间、人口等外部因素的影响较小, 其功率需求主要由相关企业的生产计划来决定。在电力市场环境下, 准确的负荷预测有助于工业用户更好地制定电力交易策略, 从而增加收益。在此背景下, 基于改进的长短期记忆(long short term memory, LSTM)深度学习网络模型, 提出了一种工业负荷短期预测算法。首先,在网络层次上构建层数更多即网络层次更深的LSTM深度学习负荷预测模型。接着, 在每个LSTM单元构成的隐含层中, 采用Dropout技术对神经元进行随机概率失活, 并通过正则化有效避免深度学习过拟合问题并改善了模型性能。然后, 采用真实的工业用户历史负荷数据对所提算法进行测试, 并与已有的短期负荷预测算法进行对比, 包括自回归滑动平均模型 (auto-regressive and moving average model, ARMA), 最邻近回归算法 (K nearest neighbor regression, KNN) 以及支持向量回归算法 (support vector regression, SVR)。仿真结果表明, 所提深度学习工业负荷短期预测算法相比于一些现有方法, 其预测准确度有明显提升,预测结果的平均绝对百分误差(mean absolute percentage error, MAPE)在9%以下。  相似文献   

17.
变压器油温是直接反映变压器散热性能的指标,准确预测变压器顶层油温有利于监测其运行情况。通过分析传统变压器顶层油温数学模型,综合考虑负载率与环境温度对油温的影响,确定以负荷数据峰值与谷值的有功功率、无功功率和环境温度作为特征量,提出了一种基于长短时记忆(Long Short Term Memory Network,LSTM)网络算法的变压器顶层油温预测模型。以变电站真实数据做实例仿真分析,训练所提的LSTM预测模型,并选取5个随机样本进行预测;同时,分别搭建BP神经网络(BPNN)和循环神经网络(RNN)预测模型对相同样本做预测,并截取前30时刻预测数据与LSTM模型的预测值做对比。仿真结果表明,基于LSTM的温度预测模型的计算精度最高,误差率控制在5%以内,预测值与实际值变化趋势基本一致。该模型可有效实现变压器顶层油温的预测。  相似文献   

18.
樊磊  张倩  李国丽  伍骏杰 《现代电力》2023,126(6):899-905
光伏发电功率的预测对电网稳定以及安全地运行有重要意义,提出一种基于长短期记忆网络(long short term memory ,LSTM)数字孪生体的预测模型,通过数字孪生体模型实现光伏发电功率的精准预测。数字孪生体分为物理空间与数据空间,首先根据物理空间得到的气象孪生数据由LSTM算法获取初步的预测功率,同时更新历史气象数据库。然后在气象数据库中找到相似日,对比相似日的预测功率和实际功率,对初步的预测功率进行误差修正,得到最终光伏功率预测值。文中所提的数字孪生体实现了物理实体与数据驱动的连接,同时物理实体可进行自我学习和更新,因此相较于传统的光伏预测结果更为精确,通过仿真算例进一步证实数字孪生体预测的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号