首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule. Theoretical calculations confirm the occurrence of constructive and destructive interference in the para- and meta-OPV3 molecules respectively, which arises from the phase difference of the transmission coefficients through the molecular orbitals.  相似文献   

2.
We have theoretically investigated the effects of random discrete distribution of implanted and annealed arsenic (As) atoms on device characteristics of silicon nanowire (Si NW) transistors. Kinetic Monte Carlo simulation is used for generating realistic random distribution of active As atoms in Si NWs. The active As distributions obtained through the kinetic Monte Carlo simulation are introduced into the source and drain extensions of n-type gate-all-around NW transistors. The current–voltage characteristics are calculated using the non-equilibrium Green''s function method. The calculated results show significant fluctuation of the drain current. We examine the correlation between the drain current fluctuation and the factors related to random As distributions. We found that the fluctuation of the number of dopants in the source and drain extensions has little effect on the on-current fluctuation. We also found that the on-current fluctuation mainly originated from the randomness of interatomic distances of As atoms and hence is inherent in ultra-small NW transistors.  相似文献   

3.
In order to improve the crystalline quality of diamond films produced by microwave plasma assisted chemical vapour deposition (MPCVD), the structural evolution of the silicon carbide interlayer during the bias nucleation step has been investigated by reflection high energy electron diffraction (RHEED). Here we highlight the fact that the carbonisation pre-treatment induces a strong extension of the silicon carbide lattice in the direction perpendicular to the surface. This extension gives a lattice constant close to that of silicon. Then, during bias enhanced nucleation, the carbide lattice relaxes. At the same time, this modification is accompanied by an increase of the surface roughness and by a progressive polar misorientation of the silicon carbide. All these transformations could be responsible for the observed drop of the diamond epitaxial ratio when the duration of the bias step is extended. Finally, we found that a lower methane concentration in the plasma slows down this carbide transformation, allowing us to obtain a promising 37% epitaxial ratio.  相似文献   

4.
We have calculated the optical absorption for InGaNAs and GaNSb using the band anticrossing (BAC) model and a self-consistent Green’s function (SCGF) method. In the BAC model, we include the interaction of isolated and pair N levels with the host matrix conduction and valence bands. In the SCGF approach, we include a full distribution of N states, with non-parabolic conduction and light-hole bands, and parabolic heavy-hole and spin-split-off bands. The comparison with experiments shows that the first model accounts for many features of the absorption spectrum in InGaNAs; including the full distribution of N states improves this agreement. Our calculated absorption spectra for GaNSb alloys predict the band edges correctly but show more features than are seen experimentally. This suggests the presence of more disorder in GaNSb alloys in comparison with InGaNAs.  相似文献   

5.
Q.X Liu 《Carbon》2004,42(3):629-633
Aiming at synthesis diamond nanowires, a simple thermodynamic approach was performed with respect to the effect of nanosize-induced additional pressure on the Gibbs free energy of critical nuclei to elucidate diamond nucleation inside carbon nanotubes upon chemical vapor deposition, based on the carbon thermodynamic equilibrium phase diagram. Notably, these analysis showed that the diamond nucleation would be preferable inside a carbon nanotube due to the effect of surface tension induced by the nanosize curvature of the carbon nanotube and diamond critical nuclei, compared with diamond nucleation on the flat surface of a silicon substrate. Meanwhile, the metastable phase region of diamond nucleation would be driven into a new stable phase region in the carbon thermodynamic equilibrium phase diagram by the effect of nanosize-induced additional pressure. Eventually, we predicted that carbon nanotubes would be an effective path to grow diamond nanowires by chemical vapor deposition.  相似文献   

6.
A good comprehension of the mechanical properties of photovoltaic silicon wafers is crucial to maintain low breakage rates during solar cell manufacturing. As brittle material, silicon wafers are theoretically subject to a strength size effect. This study aims at determining whether this effect should be considered when comparing the strength of photovoltaic wafers. We derive a theoretical strength scaling law and perform an extensive experimental study on 240 diamond-wire sawn silicon wafers, which have the particularity of exhibiting an anisotropy in Weibull parameters. We compare test results from three different bending configurations and show that a size effect is only observable when loading the wafers perpendicular to the saw marks. Strength values obtained when loading the wafers in the direction of the wire yield identical results regardless of the size of the tested area. These findings can open up prospects for the standardization of testing methods for photovoltaic wafers.  相似文献   

7.
Silicon carbide (SiC) exhibits excellent thermal conductivity. Recently, thermal conductivity that amounts to 261.5 W/m-K has been obtained in polycrystalline SiC ceramic liquid-phase sintered (LPS) with Y2O3-Sc2O3 additives at 2050 °C under a nitrogen atmosphere. From the additive used to the sintering atmosphere selected, many factors affect the thermal conductivity of the SiC. In this review, important factors that are known to determine the thermal conductivity of LPS-SiC (lattice oxygen/nitrogen content, porosity, grain size, grain boundary structure, phase transformation, and additive composition) have been evaluated. While reviewing the impact of each factor on thermal conductivity, hidden correlations among different factors are also discussed. Among the factors that are claimed to be important, we suggest a few factors that are more critical to thermal conductivity than others. Based on the most critical factors on the thermal conductivity of LPS-SiC, a complete engineers’ guide for high thermal conductivity LPS-SiC is proposed.  相似文献   

8.
We investigate the effects of coupling between a molecular exciton, which consists of an electron and a hole in a molecule, and a surface plasmon (exciton-plasmon coupling) on the electron transitions of the molecule using nonequilibrium Green’s function method. Due to the exciton-plasmon coupling, excitation channels of the molecule arise in the energy range lower than the electronic excitation energy of the molecule. It is found that the electron transitions via these excitation channels give rise to the molecular luminescence and the vibrational excitations at the bias voltage lower than the electronic excitation energy of the molecule. Our results also indicate that the vibrational excitations assist the emission of photons, whose energy exceeds the product of the elementary charge and the bias voltage, (upconverted luminescence).  相似文献   

9.
Sirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.3-eGFP) for the overexpression of SIRT2.3 in the hippocampus of 2 month-old SAMR1 and SAMP8 mice. Our results show that the specific overexpression of this isoform does not induce significant behavioral or molecular effects at short or long term in the control strain. Only a tendency towards a worsening in the performance in acquisition phase of the Morris Water Maze was found in SAMP8 mice, together with a significant increase in the pro-inflammatory cytokine Il-1β. These results suggest that the age-related increase of SIRT2.3 found in the brain is not responsible for induction or prevention of senescence. Nevertheless, in combination with other risk factors, it could contribute to the progression of age-related processes. Understanding the specific role of SIRT2 on aging and the underlying molecular mechanisms is essential to design new and more successful therapies for the treatment of age-related diseases.  相似文献   

10.
Autoimmune thyroid diseases (AITDs) are chronic autoimmune disorders that cause impaired immunoregulation, leading to specific immune responses against thyroid antigens. Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) are the major forms of AITDs. Increasing evidence suggests a possible role of microbiota alterations in the pathogenesis and progression of AITDs. This systematic review was designed to address the following question: “Is microbiota altered in patients with AITDs?” After screening the selected studies using the inclusion and exclusion criteria, 16 studies were included in this review (in accordance with PRISMA statement guidelines). A meta-analysis revealed that patients with HT showed significantly higher values of diversity indices (except for the Simpson index) and that patients with GD showed significant tendencies toward lower values of all assessed indices compared with healthy subjects. However, the latter demonstrated a higher relative abundance of Bacteroidetes and Actinobacteria at the phylum level and thus Prevotella and Bifidobacterium at the genus level, respectively. Thyroid peroxidase antibodies showed the most significant positive and negative correlations between bacterial levels and thyroid functional parameters. In conclusion, significant alterations in the diversity and composition of the intestinal microbiota were observed in both GD and HT patients.  相似文献   

11.
Thermal management in microelectronic technology has become an important issue due to the increase of device power and integration levels. Diamond and silver were selected for the fabrication of composites with high thermal conductivity and low coefficient of thermal expansion (CTE). Diamond reinforcement powders with varied types, shapes and sizes were electroless plated by silver. Then these powders were hot-pressed in air at 600 °C, 500 MPa for 30 min to produce bulk silver matrix composites. The thermal conductivity and the CTEs of the composite at 20 vol.% are 420 W/m K and 12 ppm/K, respectively. These diamond/Ag composites have potential applications for the high integration electronic devices.  相似文献   

12.
In this paper, the moderately and lightly doped porous silicon nanowires (PSiNWs) were fabricated by the ‘one-pot procedure’ metal-assisted chemical etching (MACE) method in the HF/H2O2/AgNO3 system at room temperature. The effects of H2O2 concentration on the nanostructure of silicon nanowires (SiNWs) were investigated. The experimental results indicate that porous structure can be introduced by the addition of H2O2 and the pore structure could be controlled by adjusting the concentration of H2O2. The H2O2 species replaces Ag+ as the oxidant and the Ag nanoparticles work as catalyst during the etching. And the concentration of H2O2 influences the nucleation and motility of Ag particles, which leads to formation of different porous structure within the nanowires. A mechanism based on the lateral etching which is catalyzed by Ag particles under the motivation by H2O2 reduction is proposed to explain the PSiNWs formation.  相似文献   

13.
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human gammaherpesvirus 8 (HHV-8), contains oncogenes and proteins that modulate various cellular functions, including proliferation, differentiation, survival, and apoptosis, and is integral to KSHV infection and oncogenicity. In this review, we describe the most important KSHV genes [ORF 73 (LANA), ORF 72 (vCyclin), ORF 71 or ORFK13 (vFLIP), ORF 74 (vGPCR), ORF 16 (vBcl-2), ORF K2 (vIL-6), ORF K9 (vIRF 1)/ORF K10.5, ORF K10.6 (vIRF 3), ORF K1 (K1), ORF K15 (K15), and ORF 36 (vPK)] that have the potential to induce malignant phenotypic characteristics of Kaposi’s sarcoma. These oncogenes can be explored in prospective studies as future therapeutic targets of Kaposi’s sarcoma.  相似文献   

14.
Thermal stability of [(CH3SiH)30(C6H5SiCH3)70]n a hydropolysilane copolymer, in vacuum and its crosslinking reactions with vinylic silanes as crosslinking agents was evaluated in order to obtain high yields of oxygen-free silicon carbide ceramics. It was found that the polymer was thermally stable in vacuum up to 140 °C for 20 hrs based on Fourier transform infrared spectroscopy analysis. The crosslinking reactions of the polymer occurred to various extents depending on the type of vinylic silanes used as evidenced by Fourier transform infrared spectroscopy, ultraviolet spectroscopy, gel permeation chromatography, thermogravimetry and solubility data. The additions of vinylic silanes to Si-H in the hydropolysilane were found to obey anti-Farmer's rule, despite Farmer's addition of unsaturated hydrocarbons to Si-H.  相似文献   

15.
Properties of the silicon/diamond interface are investigated in terms of leakage current measurements of silicon pn-junction diodes. Two different types of pre-treatment and deposition methods of polycrystalline diamond were investigated, microwave assisted plasma CVD (MPCVD) with bias pre-treatment and hot filament CVD (HFCVD). It was found that when the depletion region was in contact with the silicon/diamond interface the leakage current was increased. Generation at surface states, with a surface recombination velocity of about 9 × 106 cm s−1, was found to be the responsible mechanism in the MPCVD samples, while surface conduction was also contributing to the leakage current in the HFCVD samples. However, near ideal diode characteristics with low leakage current were obtained by introducing a thin silicon dioxide layer between the silicon and diamond.  相似文献   

16.
Ursolic and oleanolic acids are secondary plant metabolites that are known to be involved in the plant defence system against water loss and pathogens. Nowadays these triterpenoids are also regarded as potential pharmaceutical compounds and there is mounting experimental data that either purified compounds or triterpenoid-enriched plant extracts exert various beneficial effects, including anti-oxidative, anti-inflammatory and anticancer, on model systems of both human or animal origin. Some of those effects have been linked to the ability of ursolic and oleanolic acids to modulate intracellular antioxidant systems and also inflammation and cell death-related pathways. Therefore, our aim was to review current studies on the distribution of ursolic and oleanolic acids in plants, bioavailability and pharmacokinetic properties of these triterpenoids and their derivatives, and to discuss their neuroprotective effects in vitro and in vivo.  相似文献   

17.
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells’ capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.  相似文献   

18.
19.
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.  相似文献   

20.
The most common cause of dementia, especially in elderly people, is Alzheimer’s disease (AD), with aging as its main risk factor. AD is a multifactorial neurodegenerative disease. There are several factors increasing the risk of AD development. One of the main features of Alzheimer’s disease is impairment of brain energy. Hypometabolism caused by decreased glucose uptake is observed in specific areas of the AD-affected brain. Therefore, glucose hypometabolism and energy deficit are hallmarks of AD. There are several hypotheses that explain the role of glucose hypometabolism in AD, but data available on this subject are poor. Reduced transport of glucose into neurons may be related to decreased expression of glucose transporters in neurons and glia. On the other hand, glucose transporters may play a role as potential targets for the treatment of AD. Compounds such as antidiabetic drugs, agonists of SGLT1, insulin, siRNA and liposomes are suggested as therapeutics. Nevertheless, the suggested targets of therapy need further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号