首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of NMDA and non-NMDA glutamate receptors in long-term potentiation has been intensely investigated, yet recent evidence on the dynamics of synaptic depolarization suggests that the original view should be extended. NMDA receptor-mediated currents, apart from their Ca2+ permeability, show a marked voltage dependence, consisting of current increase and slowdown during membrane depolarization. During high-frequency synaptic transmission, NMDA current increase and slowdown are primed by non-NMDA receptor-dependent depolarization and proceed regeneratively. Thus, NMDA receptors make a decisive contribution to membrane depolarization and spike-firing. From the data obtained at the mossy fibergranule cell synapse of the cerebellum, we propose that the electrogenic role of NMDA receptors is functional to LTP induction. Moreover, during LTP, both NMDA and non-NMDA receptor currents are potentiated, thus establishing a feed-forward mechanism that ultimately enhances spike firing. Thus, NMDA receptors exert an integrated control on signal coding and plasticity. This mechanism may have important implications for information processing at the cerebellar mossy fibergranule cell relay.  相似文献   

2.
Long-term potentiation (LTP) is an activity-dependent strengthening of synaptic efficacy that is considered to be a model of learning and memory. Protein tyrosine phosphorylation is necessary to induce LTP. Here, induction of LTP in CA1 pyramidal cells of rats was prevented by blocking the tyrosine kinase Src, and Src activity was increased by stimulation producing LTP. Directly activating Src in the postsynaptic neuron enhanced excitatory synaptic responses, occluding LTP. Src-induced enhancement of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor-mediated synaptic responses required raised intracellular Ca2+ and N-methyl-D-aspartate (NMDA) receptors. Thus, Src activation is necessary and sufficient for inducing LTP and may function by up-regulating NMDA receptors.  相似文献   

3.
The opioid peptides represent a major class of neurotransmitter in the vertebrate nervous system and are prevalent in the hippocampus. There is considerable interest in the physiological function of the opioids contained in the mossy fiber pathway. The release of opioids from mossy fibers shows a strong frequency dependence. Long-term potentiation (LTP) at this synapse, an NMDA receptor-independent form of LTP, also depends on high-frequency synaptic activity, and this has led to speculation that endogenous opioids may be a critical factor in LTP induction. Previous reports using extracellular recordings have provided evidence for and against a role for opioids in mossy fiber LTP. Using single-cell recording techniques, we have tested the hypothesis that endogenous opioids are required for mossy fiber LTP induction. We recorded from a defined population of synapses that had EPSCs with fast rise times, short latencies, and monophasic decays, consistent with a proximally terminating synapse. The opioid antagonist naloxone prevented mossy fiber LTP in the rat, but had no effect on the commissural/associational system, a nonopioid-containing pathway. The action of naloxone was not mediated through disinhibition because GABAA receptors were pharmacologically blocked in these experiments. We also tested the hypothesis that variations in postsynaptic receptor subtype distribution between species might explain previous controversies regarding the role of endogenous opioids. In contrast to the rat, LTP of the mossy fiber field potential in guinea pig was not blocked by naloxone. Our data suggest that opioids may be the presynaptically released, frequency-dependent, associative factor for mossy fiber LTP induction.  相似文献   

4.
Nitric oxide (NO) is a free radical gas that is synthesized from L-arginine by NO synthase (NOS). Activation of NMDA, non-NMDA or metabotropic glutamate receptors causes NO formation through NOS activation. From data obtained in experiments performed by microdialysis together with nitrate assay, we have proposed that NO production in the cerebellum following non-NMDA and metabotropic glutamate receptor activation may be independent of NOS activity, while NMDA receptor-mediated NO production depends on its activity. Glial cells appear to play a role in modulating NO production by regulating L-arginine availability. Activation of NMDA receptors and the increase in intracellular calcium concentration is a trigger for the long-term potentiation (LTP). NO acts as a retrograde messenger in the hippocampal LTP to enhance glutamate release from presynaptic nerve terminal, in which cyclic GMP may be involved. Behavioral studies demonstrate that NO is involved in some forms of learning and memory. Our studies suggest that NMDA/NO/cyclic GMP signaling plays a role in spatial working memory. Further, it is suggested that NO production in the brain is altered by aging. These results support the hypothesis that NO plays a role in mechanism of synaptic plasticity.  相似文献   

5.
A growing body of evidence suggests that modulation of certain proteins of the exocytotic machinery is, in part, involved in the biochemical changes that underlie long-term synaptic plasticity. We have previously shown that the induction of long-term potentiation (LTP) at perforant path to dentate granule cell synapses in the rat hippocampus induces changes in the mRNA levels of syntaxin 1B and synapsin I, known to be involved in neurotransmitter release. Immunohistochemical staining suggested that concomitant changes in these proteins occurred at mossy fibre synapses, downstream of those synapses at which LTP was induced, leading us to postulate that such a mechanism might underlie a form of transsynaptic plasticity. Here we have used a specific mossy-fibre synaptosome preparation to quantify levels of proteins and measure, using a chemiluminescent glutamate assay, depolarization-induced glutamate release from these synaptosomes after induction of LTP in the dentate gyrus in vivo. We show that 5 h after the induction of LTP, there is an increase in the protein levels of syntaxin 1B and, although to a lesser extent, the synapsins I and II, associated with an increase in depolarization-induced release of glutamate within these terminals. Increases in both the protein levels and glutamate release were not observed when dentate gyrus LTP was blocked by an NMDA receptor antagonist. From these results we propose a molecular mechanism for the propagation of synaptic plasticity through hippocampal circuits.  相似文献   

6.
The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA- and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase. These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus.  相似文献   

7.
In the developing visual cortex activity-dependent refinement of synaptic connectivity is thought to involve synaptic plasticity processes analogous to long-term potentiation (LTP). The recently described conversion of so-called silent synapses to functional ones might underlie some forms of LTP. Using whole-cell recording and minimal stimulation procedures in immature pyramidal neurons, we demonstrate here the existence of functionally silent synapses, i.e., glutamatergic synapses that show only NMDA receptor-mediated transmission, in the neonatal rat visual cortex. The incidence of silent synapses strongly decreased during early postnatal development. After pairing presynaptic stimulation with postsynaptic depolarization, silent synapses were converted to functional ones in an LTP-like manner, as indicated by the long-lasting induction of AMPA receptor-mediated synaptic transmission. This conversion was dependent on the activation of NMDA receptors during the pairing protocol. The selective activation of NMDA receptors at silent synapses could be explained presynaptically by assuming a lower glutamate concentration compared with functional ones. However, we found no differences in glutamate concentration-dependent properties of NMDA receptor-mediated PSCs, suggesting that synaptic glutamate concentration is similar in silent and functional synapses. Our results thus support a postsynaptic mechanism underlying silent synapses, i.e., that they do not contain functional AMPA receptors. Synaptic plasticity at silent synapses might be expressed postsynaptically by modification of nonfunctional AMPA receptors or rapid membrane insertion of AMPA receptors. This conversion of silent synapses to functional ones might play a major role in activity-dependent synaptic refinement during development of the visual cortex.  相似文献   

8.
Cerebellar long-term potentiation (LTP) is a use-dependent increase in the strength of the granule cell-Purkinje neuron synapse that occurs after brief stimulation of granule cell axons at 2-8 Hz. Previous work has shown that cerebellar LTP also may be seen when synaptic currents are evoked in granule cell-glial cell pairs in culture. This finding suggests a model in which cerebellar LTP is expressed presynaptically and therefore may be detected by either neuronal or glial postsynaptic cells. However, synaptic currents evoked in both granule cell-glial cell pairs and granule cell-Purkinje neuron pairs in culture are mediated primarily by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, raising the possibility that cerebellar LTP might be expressed postsynaptically in both glial cells and Purkinje neurons in a similar manner. To address this question, glutamate transport currents were recorded in granule cell-glial cell pairs in culture by pharmacological isolation. These currents were increased by substitution of internal Cl with NO3 and were blocked by -pyrrolidine-2,4-dicarboxylate, both characteristics of the major cloned Bergmann glial cell glutamate transporter, EAAT1. After acquisition of baseline responses, LTP of isolated transport current was evoked by stimulation at 4 Hz (100 pulses) and could be blocked by removal of external Ca during this stimulation. The expression of LTP was associated with a decrease in the rate of synaptic failures and a decrease in the degree of paired-pulse facilitation. These findings, when taken together with the previous observation that both Purkinje neuron and glial AMPA/kainate responses can be used to detect cerebellar LTP, strongly suggest that the expression of cerebellar LTP is, at least in part, presynaptic. This strategy should also be useful in illuminating the locus of expression of other model systems of information storage such as hippocampal LTP/long-term depression.  相似文献   

9.
The membrane-permeant gas NO is a putative intercellular messenger that has been proposed on the basis of previous in vitro studies to be involved in synaptic plasticity, especially the induction of long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus and cortex. In the present study, the role of NO in synaptic plasticity has been investigated in vivo. In particular, the action of the novel and selective neuronal NO synthase (nNOS) inhibitor 7-nitro-indazole (7-NI) has been investigated on the induction of LTP and depotentiation (DP) of field EPSPs in CA1 of the hippocampus in vivo. Unlike previously studied nonselective NOS inhibitors, 7-NI does not increase arterial blood pressure. In vehicle-injected rats, high-frequency stimulation consisting of a series of trains at 200 Hz induced LTP. However, LTP induction was strongly inhibited in 7-NI (30 mg/kg, i.p.)-treated animals. The inhibitory effect of 7-NI on the induction of LTP was prevented by pretreatment with L-arginine, the substrate amino acid used by NOS. In control animals, low-frequency stimulation consisting of 900 stimuli at 10 Hz induced DP of previously established LTP, whereas in 7-HI-treated animals only a short-term depression was induced. This effect of 7-NI also was prevented by D-arginine. The LTP and DP induced in control animals in this study were NMDA receptor-dependent, the NMDA receptor antagonist 3-(R,S)-2-carboxypiperazin-4-yl-propyl-1- phosphonic acid inhibiting the induction of both forms of synaptic plasticity. The present experiments are the first to demonstrate that an NOS inhibitor blocks the induction of the synaptic component of LTP and DP in vivo and, therefore, these results strengthen evidence that the production of NO is necessary for the induction of LTP and DP.  相似文献   

10.
Norepinephrine induces an activity-independent long-lasting depression of synaptic transmission in the lateral perforant path input to dentate granule cells, whereas high frequency stimulation induces activity-dependent long-term potentiation (LTP). We investigated the role of endogenous activation of beta-adrenergic receptors in LTP of the lateral and medial perforant paths under conditions affording selective stimulation of these pathways in the rat hippo-campal slice. Propranolol (1 microM), a beta-receptor antagonist, blocked LTP induction of both lateral and medial perforant path-evoked field excitatory postsynaptic potentials. The results indicate a broad requirement for norepinephrine in different types of synaptic plasticity, including activity-independent depression and activity-dependent LTP in the lateral perforant path.  相似文献   

11.
A combination of experimental and modeling approaches was used to study cellular-molecular mechanisms underlying the expression of short-term potentiation (STP) and long-term potentiation (LTP) of glutamatergic synaptic transmission in the hippocampal slice. Electrophysiological recordings from dentate granule cells revealed that high-frequency stimulation of perforant path afferents induced a robust STP and LTP of both (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic responses. However, the decay time constant for STP of the AMPA receptor-mediated excitatory postsynaptic potential was approximately 6 min, whereas the decay time constant for STP of the NMDA receptor-mediated excitatory postsynaptic potential was only 1 min. In addition, focal application of agonists during the expression of STP revealed that the magnitude of conductance change elicited by NMDA application was significantly enhanced, whereas the magnitude of conductance change elicited by application of AMPA remained constant. These findings are most consistent with a postsynaptic mechanism of STP and LTP. Different putative mechanisms were evaluated formally using a computational model that included diffusion of glutamate within the synaptic cleft, different kinetic properties of AMPA and NMDA receptor/channels, and geometric relations between presynaptic release sites and postsynaptic receptor/channels. Simulation results revealed that the only hypothesis consistent with experimental data is that STP and LTP reflect a relocation of AMPA receptor/channels in the postsynaptic membrane such that they become more closely "aligned" with presynaptic release sites. The same mechanism cannot account for STP or LTP of NMDA receptor-mediated responses; instead, potentiation of the NMDA receptor subtype is most consistent with an increase in receptor sensitivity or number.  相似文献   

12.
In rat brain stem slices, we investigated the role of platelet activating factor (PAF) in long-term potentiation (LTP) induced in the ventral part of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferent. The synaptosomal PAF receptor antagonist, BN-52021 was administered before and after HFS. BN-52021 did not modify the vestibular potentials under basal conditions, but it reduced the magnitude of potentiation induced by HFS, which completely developed after the drug wash-out. The same effect was obtained by using CV-62091, a more potent PAF antagonist at microsomal binding sites, but with concentrations higher than those of BN-52021. By contrast both BN-52021 and CV-6209 had no effect on the potentiation once induced. This demonstrates that PAF is involved in the induction but not in the maintenance of vestibular long-term effect through activation of synaptosomal PAF receptors. In addition, we analyzed the effect of the PAF analogue, 1-O-hexadecyl-2-O- (methylcarbamyl)-sn-glycero-3-phosphocoline (MC-PAF) and the inactive PAF metabolite, 1-O-hexadecyl-sn-glycero-3-phosphocoline (Lyso-PAF) on vestibular responses. Our results show that MC-PAF, but not Lyso-PAF induced potentiation. This potentiation was prevented by D,L-2-amino 5-phosphonopentanoic acid, suggesting an involvement of N-methyl-D-aspartate receptors. Furthermore, under BN-52021 and CV-6209, the MC-PAF potentiation was reduced or abolished. The dose-effect curve of MC-PAF showed a shift to the right greater under BN-52021 than under CV-6209, confirming the main dependence of MC-PAF potentiation on the activation of synaptosomal PAF receptors. Our results suggest that PAF can be released in the MVN after the activation of postsynaptic mechanisms triggering LTP, and it may act as a retrograde messenger which activates the presynaptic mechanisms facilitating synaptic plasticity.  相似文献   

13.
Numerous studies in both rats and humans indicate the importance of the amygdala in the acquisition and expression of learned fear. The identification of the amygdala as an essential neural substrate for fear conditioning has permitted neurophysiological examinations of synaptic processes in the amygdala that may mediate fear conditioning. One candidate cellular mechanism for fear conditioning is long-term potentiation (LTP), an enduring increase in synaptic transmission induced by high-frequency stimulation of excitatory afferents. At present, the mechanisms underlying the induction and expression of amygdaloid LTP are only beginning to be understood, and probably involve both the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subclasses of glutamate receptors. This article will examine recent studies of synaptic transmission and plasticity in the amygdala in an effort to understand the relationships of these processes to aversive learning and memory.  相似文献   

14.
Long term potentiation (LTP) is a widely studied form of synaptic plasticity. Brief tetanic stimulation of synaptic afferents in several areas of the brain, most notably the hippocampus, produces long lasting changes in the synaptic strength. The induction of LTP requires in the limit a significant activation of the NMDA receptor and the subsequent entry of calcium into the post synaptic cell. The maintenance of LTP requires at least in part a change in presynaptic function. This review addresses the current thinking in the literature on how a post synaptic induction event may be communicated to the presynaptic terminal and subsequently lead to a series of poorly defined biochemical process that ultimately lead to an enhancement in the efficiency of the potentiated terminal.  相似文献   

15.
In the hippocampus there are two distinct forms of long-term depression (LTD) of excitatory synaptic transmission. In the CA1 region, prolonged low-frequency stimulation induces LTD by activating postsynaptic NMDA receptors, which causes a moderate rise in Ca2+ concentrations. In mossy fiber synapses of the CA3 region, similar low-frequency stimulation also gives rise to LTD. However, this form of LTD (mossy fiber LTD) does not require activation of NMDA receptors, but is mediated by activation of presynaptic metabotropic glutamate receptors. Induction of mossy fiber LTD is not dependent on postsynaptic depolarization or activation of postsynaptic ionotropic glutamate receptors, thus it is likely to be mediated by purely presynaptic mechanisms. This conclusion is confirmed by the analysis of mutant mice lacking presynaptic mGluR2, in which mossy fiber LTD is almost absent. Since long-term potentiation at mossy fiber synapses is also induced presynaptically, the synaptic efficacy may be regulated through common mechanisms bidirectionally, which may contribute to neural information processing in the hippocampus.  相似文献   

16.
Neuronal survival during mammalian development crucially depends on target-derived neurotrophic factors. Target loss removes this trophic support and leads in most cases to the transsynaptic retrograde degeneration of the respective afferents. Primary vestibular afferents (PVA) originating from bipolar neurons in the vestibular ganglion (VG) are the first mossy fibers that enter the cerebellum, but little is known about the survival requirements of VG neurons. In the present study the influence of the differential granule cell (GC) target loss on the survival of VG neurons was studied quantitatively using unbiased stereological methods in the cerebellar mutants Purkinje cell degeneration (pcd/pcd), Lurcher (Lc/+), and Weaver (wv/wv). Neither the secondary GC loss in the Purkinje cell deficient mutants pcd/pcd and Lc/+, nor the primary loss of GCs in wv/wv produced any significant reduction in the total number of bipolar neurons in the VG compared to controls. So, PVA neurons are highly resistant to cerebellar target deprivation and survive in the absence of cerebellar granule and Purkinje cells, regardless of whether the target loss occurs before (in wv/wv), during (in Lc/+) or after (in pcd/pcd) the mossy fiber-granule cell synaptogenesis.  相似文献   

17.
In the adult brain, neurotrophin-3 (NT-3) is mainly localized in dentate granule cells, and its expression is decreased by various stimuli, e.g., seizure activity. We have examined the role of endogenous NT-3 for excitatory synaptic transmission at lateral perforant path-dentate granule cell synapses using hippocampal slices from NT-3 knock-out (+/-) and wild-type (+/+) mice. Paired-pulse facilitation (PPF) and also short-term synaptic plasticity induced by a brief, high-frequency train of afferent stimulation were reduced, but the expression of long-term potentiation was not affected in the NT-3+/- mice. Incubation of the slices with recombinant NT-3 reversed the deficit in PPF through a mechanism requiring de novo protein synthesis, implying that the impaired short-term plasticity does not result from a developmental alteration. No changes of overall presynaptic release probability, measured by the progressive block of NMDA receptor-mediated synaptic currents by MK-801, or desensitization of AMPA receptors were detected. Because NT-3 expression is reduced after focal seizures, impaired short-term facilitation may represent a protective response that limits the propagation of epileptiform activity from the entorhinal cortex to the hippocampus.  相似文献   

18.
In addition to the regulation of neuronal survival and differentiation, neurotrophins may play a role in synapse development and plasticity. Application of brain-derived neurotrophic factor (BDNF) promotes long-term potentiation (LTP) in CA1 synapses of neonatal hippocampus, which otherwise exhibit only short-term potentiation. This is attributable, at least in part, to an attenuation of the synaptic fatigue induced by high-frequency stimulation (HFS). However, the prevention of synaptic fatigue by BDNF could be mediated by an attenuation of synaptic vesicle depletion from presynaptic terminals and/or a reduction of the desensitization of postsynaptic receptors. Here we provide evidence supporting a presynaptic effect of BDNF. The effect of BDNF on synaptic fatigue depended on the stimulation frequency, not on the stimulus duration nor on the number of stimulation pulses. BDNF was only effective when the synapses were stimulated at frequencies >50 Hz. Treatment with BDNF also potentiated paired-pulse facilitation (PPF), a parameter reflecting changes in the properties of presynaptic terminals. This effect of BDNF was restricted only to PPF elicited with interpulse intervals 相似文献   

19.
Activity-dependent changes of synaptic efficacy in the superior cervical ganglion (SCG) can be prevented by gamma-aminobutyric acid (GABA). We have studied the effects of picrotoxin (PTX) on GABA-mediated inhibition of long-term potentiation (LTP) of synaptic transmission in the rat SCG. Compound action potentials were recorded extracellularly in the postganglionic internal carotid nerve in response to preganglionic nerve stimulation. PTX (100 microM) antagonized the inhibition by exogenous GABA (250 microM) of LTP induced by strong tetanic stimulation (20 Hz, 20s, supramaximal stimulation, partial blockade of transmission by hexamethonium). Additionally, PTX alone (50 microM) facilitated the induction of LTP by a weak tetanus (20 Hz, 5 s, submaximal stimulation). These results further support previous data indicating that activation of GABAA-like receptors can prevent the occurrence of synaptic plasticity at this peripheral synapse.  相似文献   

20.
Electrophysiological studies of the rodent hippocampus show that repeated seizure activity has a profound, deleterious effect on an important form of synaptic plasticity (long-term potentiation, LTP) which has been suggested to underlie memory formation. It appears that seizure activity incrementally causes an indiscriminate and widespread induction of long-term potentiation, consuming and thereby reducing overall hippocampal plasticity available for information processing. Consistent with this finding, severe deficits in a form of learning known to be mediated by hippocampal function are observed in rat subjected to repeated electroconvulsive seizures (ECS). The effect on synaptic function gradually resolves over a period of around 40 days, paralleling the time course of the transitory cognitive impairment seen following electrical seizure induction (ECT) in humans being treated for severe affective disorder. The effect is likely to be mediated by NMDA receptor activation during seizure activity, as the phenomenon can be prevented by the administration of a non-competitive NMDA receptor associated channel blocker (ketamine) immediately before seizure induction. The mechanisms described may account for the inter-ictal cognitive disturbance observed in patients suffering from poorly controlled epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号