首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
超级电容器复合材料MnO2/活性炭的研究   总被引:12,自引:3,他引:12  
采用化学共沉淀法制备了α-MnO2*nH2O和活性炭的复合电极材料,对其结构和形貌分别用XRD和SEM进行了表征.循环伏安、交流阻抗以及恒流充放电等测试结果表明复合电极材料比α-MnO2*nH2O或活性炭电极具有更好的电化学可逆性和理想的电化学电容行为.随活性物质量增加,复合电极的比电容量增长率趋于稳定.  相似文献   

2.
李俊  王先友  黄庆华  戴春玲 《功能材料》2006,37(12):1938-1941
以间苯二酚(R)和甲醛(F)为原料,碳酸钠(C)为催化剂,制备碳气凝胶(CRF),并以KMnO4和Mn(CH3COO)2·4H2O为原料,采用了化学沉淀法制备MnO2/CRF复合材料.用N2吸附、X射线衍射(XRD)和扫描电镜(SEM)对所制备的MnO2、CRF和MnO2/CRF复合材料进行了表征,结果表明碳气凝胶具有珍珠串式的无序多孔网络结构,所制备的MnO2为纳米级颗粒,复合材料为纳米级粉体.并对不同配比的MnO2/CRF复合材料的电化学性能进行了研究.循环伏安、恒流充放电实验表明了所制备的MnO2/CRF复合电极材料具有良好的可逆性和充放电性能.当MnO2含量为60%时,MnO2与碳气凝胶复合制成的新型电极材料具有226.3F/g的比电容,比碳气凝胶电极的比电容提高了1倍.此外,对复合电极的循环寿命进行了研究,表明复合电极具有良好的循环充放电性能.  相似文献   

3.
采用机械混合物理方法将电解MnO2进行细化并与活性炭组成复合电极材料。循环伏安、恒流充放电等测试结果表明,复合电极材电极具有更好的电化学可逆性和理想的电化学电容行为。当MnO2和活性炭混合物的平均粒径在3μm左右,并且其配比达到某一值时,电极呈现出良好的大电流充放电性能,解决了活性炭大电流充放电效果差的问题。  相似文献   

4.
王力臻  方华  谷书华  张勇 《功能材料》2011,42(2):226-228,232
采用真空浸溃、化学沉淀法制备活性炭(AC)载MnO2复合电极材料(MAC),利用XRD、SEM、EDS、恒流充放电、循环伏安、交流阻抗等方法对所制备的复合材料进行物性表征和电化学电容性能测试.实验结果表明在AC颗粒表面沉积了γ-MnO2颗粒,所得MAC以200mA/g的电流密度充放电,首次放电比电容高达417F/g,循...  相似文献   

5.
水热法制备MnO2的电容特性   总被引:1,自引:2,他引:1  
采用水热法制备了超级电容器MnO2电极材料,以单因素实验确定了最佳的制备条件为:水热处理温度为120℃和反应时间为6h.XRD测试结果表明,所制得的MnO2是α-MnO2和r-MnO2的混合晶型.最佳制备条件下所制得的MnO2的比电容达168.39 F·g-1.为改善MnO2的倍率特性进行Al掺杂,XRD的测试结果表明,Al3 进入到MnO2的晶格中.电化学测试结果表明,掺Al改善了电极材料的倍率特性和循环稳定性.  相似文献   

6.
7.
张莉宋金岩  邹积岩 《功能材料》2007,38(A04):1308-1311
用醋酸锰和高锰酸钾制备二氧化锰粉末;用氯化钌和氢氧化钠制备水合二氧化钌粉末。以二氧化钌和二氧化锰作为电极材料的活性物质,以活性碳粉末为电极的基础原料制备复合电极,并组装超级电容器单元。用x射线衍射仪和扫描电镜对电极材料进行表征,可得复合电极具有明显的电容特征。在浓度为38%的硫酸电解质溶液中,对复合电极进行电化学性能测试,循环伏安曲线、充放电曲线和交流阻抗特性显示了复合电极材料具有良好的电化学性能。碳,锰复合电极的比容量为128F/g,碳/锰/钌复合电极的比容量为266F/g。当二氧化钌和二氧化锰在电极中质量比各占20%时,更能发挥活性物质的作用,由该电极材料组成的超级电容器具有理想的电容特性。  相似文献   

8.
采用氧化交联淀粉还原高锰酸钾制备出了超级电容器纳米MnO2电极材料.通过XRD和SEM对电极材料进行了表征,采用电化学测试手段对电极材料在lmol/L Na2SO4溶液中的电容特性和比容量进行了分析.结果表明,采用该方法所制备的材料为无定型的(а-MnO2,颗粒尺寸在100~150nm左右;循环伏安和恒流充放电试验测试结果表明,а-MnO2电极具有良好的电容特性.在放电电流为100 mA/g时,其比容量高达158 F/g.  相似文献   

9.
在不同的反应时间下水热法控制制备发射状超级电容器用MnO2电极材料,采用X射线衍射光谱(XRD)、扫描电镜(SEM)表征其结构,采用循环伏安、恒流充放电和交流阻抗研究其电化学电容性能。结果表明,制备的MnO2为隐钾锰矿型,具有发射状结构,随着反应时间的延长,MnO2的晶型从不完善逐渐变得完善,发射状结构逐渐明显、增大,并且MnO2辐射出的每根单枝从较细的纳米刺逐渐生长为四方结构的纳米棒;在5mA/cm2的电流密度下,最高比电容达到了448F/g;随着反应时间的增加,MnO2电极的比容量先增长再降低。  相似文献   

10.
电化学电容器具有良好的脉冲充放电性能和大容量储能性能,是一种介于常规电容器和蓄电池之间的新型储能装置,应用前景非常广泛.目前用于制备电化学电容器的极化电极材料主要分为碳素材料、金属氧化物材料和导电聚合物材料.本文综述了电化学电容器的储能原理、材料的制备与电化学性质,并介绍了上述三类电化学电容器材料的最新研究进展.  相似文献   

11.
纳米NiO/C复合电极电化学电容特性的研究   总被引:1,自引:0,他引:1  
为满足高性能电化学电容器发展的需要,采用循环伏安法(CV)和电化学阻抗谱(EIS)研究了纳米NiO/C复合电极在KOH溶液中的电化学电容特性。这种纳米NiO/C复合电极材料是经热解柠檬酸镍凝胶制得的,由大约85%的纳米NiO和15%的纳米C组成,粉体的比表面积为181m^2/g,颗粒粒径〈30nm,微孔直径分布在4~10nm。结果表明,纳米NiO/C复合电极的比电容受KOH浓度和扫描速度的影响,高的电解质浓度和低的扫描速度有助于获得高的比电容。电极的电化学过程研究显示出法拉第反应和双电层特性,因而电极电容由法拉第准电容和双电层电容组成,电极比容量可达116.4F/g。由纳米NiO/C复合电极组成的电容器,其比能量达13.2kJ/kg,比功率达1.6kW/kg,且具有良好的循环稳定性。  相似文献   

12.
采用水热法在阳极氧化的TiO_2纳米管阵列上修饰MnO_2,制备MnO_2/TiO_2复合物电极,并组装为对称超级电容器。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:MnO_2以纳米颗粒形态均匀分布在TiO_2纳米管阵列管口和内部,充放电电流密度在1A/g下时,比电容为429.3F/g,经5 000次循环后的电容保持率为82.4%。MnO_2/TiO_2对称超级电容器在电流密度5A/g下充放电比电容为39.9F/g,经5 000次循环后的电容保持率为91.5%;功率密度400 W/kg下,能量密度为18.98 Wh/kg。阳极氧化的TiO_2纳米管阵列既可做MnO_2的载体,基底Ti又可做集流体,减轻了超级电容器的质量,为制备超级电容器提供了一种思路。  相似文献   

13.
配制RuCl3.3H2O和Co(CH3COO)2的异丙醇混合溶液,采用原位热分解法制备了超级电容器用(RuO2/Co3O4).nH2O复合薄膜电极.借助扫描电镜、X射线衍射仪、红外光谱仪、电化学分析仪等表征薄膜的微观形貌、物相转变以及电化学性能.结果表明,当涂覆液中n(Ru3+):n(Co2+)=1:3时,复合薄膜经260℃热处理3h达到最佳的综合性能,比电容为569F/g,附着力为22.4MPa,内阻仅为0.42Ω,1000次充放电循环后比电容保持在初始电容量的97.6%.  相似文献   

14.
In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO2) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H2SO4–KCl–H2O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.  相似文献   

15.
通过水热法, 利用氧化石墨烯(GO)和二价锰盐, 一步合成了还原氧化石墨烯/MnO2(RGO/M)复合电极材料。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱(RS)、傅里叶红外光谱(FTIR)和场发射扫描电镜(FESEM)等测试电极材料的物性, 通过循环伏安、交流阻抗和恒流充放电等方法研究电极材料的电化学性能。结果表明, 在一定水热反应条件下, 通过控制GO与二价锰盐配比, 可以调节RGO/M的结构及其电化学性能。在1 A/g电流密度下, 所得RGO/M复合电极的比电容可达277 F/g, 经过500次循环后, 保持率达到98%。  相似文献   

16.
采用传统工艺制备了超级电容器用高比表面积微孔炭,利于氮气吸附、循环伏安和恒流充放电研究了样品的孔结构和电容特性.结果表明,试验研制的微孔炭的比表面积达到2496m2/g,大孔径微孔含量很高,在5mA/cm2的电流密度下,活性炭的比容达到307F/g,而且具有良好的功率特性.超级电容器用活性炭的比容主要来自微孔比表面积的贡献,中孔对比容的贡献很小,其作用主要是改善功率特性.为了获得高比容和高功率密度,活性炭应该具有尽可能多的大孔径微孔和适量的小孔径中孔.  相似文献   

17.
采用化学原位聚合的方法制备了聚吡咯/二氧化钛(PPy/TiO_2)复合物,其中聚吡咯和二氧化钛的质量比分别为1∶1、2∶1、3∶1、4∶1,将其作为电化学超级电容器的电极材料,采用扫描电子显微镜和X射线衍射仪研究了PPy/TiO_2的形貌和相组成,通过电化学测试研究了PPy/TiO_2的电化学性能.结果表明:TiO_2均匀地包覆在PPy基体中,PPy/TiO_2的电化学性能明显优于纯PPy;当PPy与TiO_2的质量比为3∶1时复合材料的电化学性能最佳,即在2 A/g充放电电流密度下,其比电容达到了255.68 F/g,比纯PPy提高了2倍左右;在1 A/g充放电电流密度下,循环充放电1 000圈之后PPy/TiO_2的比电容保持率为87.2%,纯PPy的比电容保持率仅为46.9%.  相似文献   

18.
方静  崔沐  张治安  赖延清  李劫 《功能材料》2011,42(1):171-174
采用化学聚合法制备出盐酸掺杂聚苯胺,去掺杂后分别在ZnCl2丙酮溶液和FeCl3丙酮溶液中再掺杂,制得ZnCl2掺杂聚苯胺材料(PZn)和FeCl3掺杂聚苯胺材料(PFe).用直流电导率仪,扫描电镜(SEM)和红外光谱(FT-IR)对掺杂聚苯胺进行了表征.以1mol/L H2SO4为电解液组装两电极超级电容器,研究了材...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号