首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate the necessity of measuring both assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC) as indicators of bacterial regrowth potential. AOC and BDOC have often been measured separately as indicators of bacterial regrowth, or together as indicators of bacterial regrowth and disinfection by-product formation potential, respectively. However, this study proposes that both AOC and BDOC should be used as complementary measurements of bacterial regrowth potential. In monitoring of full-scale membrane filtration, it was determined that nanofiltration (NF) removed over 90% of the BDOC while allowing the majority of the AOC through. Heterotrophic plate counts (HPC) remained low during the entire period of monitoring due to high additions of disinfectant residual. In a two-year monitoring of a water treatment plant that switched its treatment process from chlorination to chlorination and ozonation, it was observed that the plant effluent AOC increased by 127% while BDOC increased by 49% after the introduction of ozone. Even though AOC is a fraction of BDOC, measuring only one of these parameters can potentially under- or over-estimate the bacterial regrowth potential of the water.  相似文献   

2.
Chlorine is typically used within drinking water distribution systems to maintain a disinfectant residual and minimize biological regrowth. Typical distribution system models describe the loss of disinfectant due to reactions within the water matrix as first order with respect to chlorine concentration, with the reactants in excess. Recent work, however, has investigated relatively simple dynamic models that include a second, hypothetical reactive species. This work extends these latter models to account for discontinuities associated with rechlorination events, such as those caused by booster chlorination and by mixing at distribution system junction nodes. Mathematical arguments show that the reactive species model will always represent chlorine decay better than, or as well as, a first-order model, under single dose or rechlorination conditions; this result is confirmed by experiments on five different natural waters, and is further shown that the reactive species model can be significantly better under some rechlorination conditions. Trihalomethane (THM) formation was also monitored, and results show that a linear relationship between total THM (TTHM) formation and chlorine demand is appropriate under both single dose and rechlorination conditions. This linear relationship was estimated using the modeled chlorine demand from a calibrated reactive species model, and using the measured chlorine demand, both of which adequately represented the TTHM formation.  相似文献   

3.
Bacterial dynamics in the drinking water distribution system of Brussels   总被引:4,自引:0,他引:4  
Water samples and pipe coupons were collected from the Brussel's drinking water distribution system (DS). A treated surface water and various groundwaters feed this DS. Parameters related to bacterial regrowth have been measured on these samples: temperature, concentrations of free residual chlorine, concentration of biodegradable dissolved organic carbon (BDOC), abundance of suspended bacteria, densities of fixed bacteria and levels of bacterial activity. Results showed that groundwaters were less susceptible to favor bacterial regrowth in the DS pipes. Treated surface water and mixed waters had the highest potential of bacterial regrowth in the DS dead ends. Results also showed that the potential regrowth induced by the distribution of a treated surface water could be reduced if: (1) the BDOC levels were below 0.25 mg C/l at the outlet of the surface water treatment plant; (2) a significant free chlorine residual was present within the whole DS. Second-stage biological filtration using granular activated carbon is now under construction at the surface water treatment plant feeding a part of this DS. This treatment implementation should reduce BDOC levels and chlorine demand of the treated surface water and will further reduce the slight regrowth phenomena observed in this DS.  相似文献   

4.
Observations made both in the field in chlorinated effluent, and in laboratory experiments show that coliforms and fecal coliforms are capable of regrowth in chlorinated wastewater. Under field conditions regrowth of coliforms in chlorinated effluent held in a storage reservoir for about 3 days appeared inversely correlated to: (1) The residual chlorine in the storage reservoir and (2) The number of coliforms surviving chlorination. In the laboratory experiments regrowth occurred after initial doses as high as 11 ppm total chlorine even when there was no chemical inactivation of the chlorine. Fecal coliforms did not generally show regrowth to the same extent as coliforms. Regrowth occurred even when coliforms were not detectible in 10-ml of samples after chlorination.Since coliforms and fecal coliforms are capable of regrowth in chlorinated sewage effluent and admixtures of it, the sanitary significance of the number of coliforms after storage or in receiving bodies of water is difficult to interpret. Thus standards might be based on the number of coliforms, or fecal coliforms detected in effluents immediately after chlorination. However, this would not be justified if in addition to coliforms, pathogenic bacteria can regrow in chlorinated effluents.  相似文献   

5.
Y. Kott  H. Ben-Ari  N. Betzer 《Water research》1978,12(12):1101-1106
Chlorination of trickling filter effluents at 40 mg l−1 chlorine for 4 h and 20 mg l−1 for 4 and 6 h showed very limited coliform survival. The number of viruses decreased from a few hundred in 100 ml before chlorination to 0 after chlorination. A 70,000 m3 pond (4 m deep) was used for holding non-chlorinated secondary effluents for 73 days. Bacterial and viral counts were performed every few days. In addition BOD, TC, pH and solar radiation were monitored. After this, the water was pumped out and chlorinated in a pipeline with 8 or 20 mg l−1 chlorine. After chlorination the coliform count was reduced by from 3 to 5 orders of magnitude. After storage for 43 days the non-chlorinated secondary effluents viral count was nil. After chlorination these effluents were also virus-free.

In the second experiment, secondary effluents chlorinated with 20 mg l−1 chlorine with a contact period of 2 h. They were then introduced to the pond. No viruses were found in the incoming water, neither during holding nor after the second chlorination, Coliform regrowth was very slow because of the temperature of the water was only 18–20°C. Identification of the M. Endo membrane filter grown isolated colonies proved that E. coli I disappeared, and all the coliforms were of non-fecal origin or that other growths were non-coliform organisms growing on the MF.

The third experiment was a repetition of the first, in spring, after the temperatures rose. The results confirmed the findings in the first experiment. Therefore, it is thought that 70 days holding of wastewater would permit its extensive agricultural use. For safety, the addition of 20 mg l−1 chlorine to effluents and a short storage could be adequate from a public health point of view.  相似文献   


6.
The fate and distribution of chlorine in aqueous solutions containing four pure bacterial cultures was studied. Solutions were subjected to chlorination at different initial free chlorine concentrations. Resulting concentrations of residual chlorine were determined by both DPD/FAS titration and membrane introduction mass spectrometry (MIMS). In all cases, false-positive breakpoint chlorination curves, probably attributable to the formation of chloroorganic-N compounds, were observed by DPD/FAS titration, while little or no inorganic residual chloramine was found by MIMS. Free chlorine was observed in similar quantities by both methods after chlorine demand by bacterial cellular materials in solution was satisfied. These results indicated the residual chloramines existed in the form of organic chloramines; these compounds are generally recognized as being poor antimicrobial agents. Further investigation confirmed that the bacterial cells were the source of organic-N compounds. The kinetics of chlorination of pure bacterial suspensions was also studied. The pattern of residual chlorine decay following chlorination of the bacterial suspensions indicated rapid initial free chlorine consumption, followed by slow free chlorine consumption, with trace quantities of inorganic chloramine being formed.  相似文献   

7.
Zhang W  DiGiano FA 《Water research》2002,36(6):1469-1482
Bacterial regrowth was investigated over a 15-month period in distribution systems (DSs) of Durham and Raleigh in North Carolina. These two water utilities were chosen because they are adjacent to one another, have similar service area characteristics, and treat surface waters of similar characteristics with conventional processes (coagulation-sedimentation and dual-media filtration). The finished waters have similar chemical quality and regrowth potential as measured by assimilable organic carbon (AOC). The major difference in treatment is the choice of final disinfectants (chlorine in Durham and chloramine in Raleigh). Ten sampling sites (monthly sampling) were chosen in each system to give wide geographic coverage and correspondingly, a wide range of water residence times. Significant losses were observed in both chlorine and chloramine residual in the DSs that produced bacterial regrowth as measured by heterotrophic plate count (HPC). The frequency distributions for log HPC (133 observations from Durham and 135 observations from Raleigh) were statistically the same in the chlorinated and chloraminated DSs. A correlation analysis indicated that disinfectant residual is the most important factor determining HPC level. However, the resulting R2 value for a non-linear regression model that also included AOC, temperature, and pH as independent variables was less than 0.7. Bacterial regrowth as measured by HPC, is dependent upon a complex interaction of chemical, physical, and operational parameters that may not be captured by such a simple statistical relationship.  相似文献   

8.
We studied how pipe material can modify the effectiveness of UV- and chlorine disinfection in drinking water and biofilms. This study was done with two pipe materials: copper and composite plastic (polyethylene, PE) in a pilot scale water distribution network. UV-disinfection decreased viable bacterial numbers in the pilot waterworks and outlet water of pipes on average by 79%, but in biofilms its disinfecting effect was minor. Chlorine decreased effectively the microbial numbers in water and biofilms of PE pipes. In outlet water from copper pipes, the effect of chlorination was weaker; microbial numbers increased back to the level before chlorination within a few days. In the biofilms present in the copper pipes, chlorine decreased microbial numbers only in front of the pipeline. One reason for weaker efficiency of chlorine in copper pipes was that its concentration declined more rapidly in the copper pipes than in the PE pipes. These results means that copper pipes may require a higher chlorine dosage than plastic pipes to achieve effective disinfection of the pipes.  相似文献   

9.
Biological regrowth in a water distribution system can be avoided by either maintaining a free chlorine residual to suppress growth or controlling conditions which may support growth, or by a combination of both. Micro-organisms will grow in water only if nutrients are present in sufficient amounts; conversely the reduction of biodegradable nutrients in water is vitally important in controlling the regrowth of microorganisms and zooplankton in the distribution system. The measurement of assimilable organic carbon has been developed as a way of evaluating the concentration of biodegradable material which is available to support such biological growth.
This paper describes the pilot-plant and full-scale studies carried out at the Berenplaat water-treatment works, Rotterdam to (a) improve disinfection, (b) eliminate the formation of trihalomethanes and other halogenated compounds formed by chlorination, and (c) reduce the final water assimilable organic carbon concentrations to very low levels, so that a high degree of biological stability can be maintained in the distribution system.  相似文献   

10.
A comparative study was carried out to determine levels of volatile halogenated hydrocarbons, especially trihalomethanes (THM) in different Belgian drinking waters, prepared from both ground and surface waters. In addition to examining raw and treated water leaving the production plants, changes in haloform concentration during transport in the distribution system were also studied. Only a slight decrease of haloform concentration after decompression in water towers and reservoirs occurred and was rapidly compensated by on going chlorination by residual free chlorine.Despite of the very different conditions used for chlorination in the plants studied, a fairly clear relation was found between total THM content in the finished waters and TOC-values of the raw waters, indicating that the primary organic load was the determining factor for haloform formation.  相似文献   

11.
The effects of discontinuous chlorination on the characteristics of the water in a pilot drinking water distribution network were investigated. The release or consumption of organic matter (as dissolved organic carbon, DOC) following chlorination and non-chlorination periods were estimated, as were changes in bacterial cell production. In each unchlorinated network 0.3 mg DOCl(-1) was consumed and the average cell production was approximately 1.3 x 10(5) cells ml(-1). In discontinously chlorinated networks (chlorine treatment: 3.3 mg Cl2l(-1), chlorine residual: 0.1 mg Cl2l(-1)) the DOC release (DOCout-DOCin) was between 0.1 and 0.2 mg Cl(-1). Biomass production (cells(out)-cells(in)) during this chlorination period was lower (approximately 2 x 10(4) cells ml(-1)). The delay before DOC was released in chlorinated networks appeared to be less than 24 h, which corresponds to one hydraulic residence time. Likewise, when chlorination was stopped, 24 h or less were required before an efficient DOC removal was resumed. When chlorination was prolonged the observed release of DOC was progressively reduced from 0.2 mg l(-1) to zero, thus after 6 weeks of continuous chlorination the DOCin was equivalent to the DOCout.  相似文献   

12.
Waters from five reservoirs and "synthetic waters", prepared using terrestrially derived dissolved organic matter (DOM) extracted from vegetation and reservoir catchment soils, were studied for their treatability with alum using a jar test procedure. DOM in drinking water is a precursor for the formation of trihalomethanes (THM) following chlorine disinfection and can also be a substrate for microbial growth in the drinking water distribution system. The trihalomethane formation potential (THMFP) represents an upper concentration limit on THMs formed by chlorination, while bacterial regrowth potential (BRP) is an indicator of the bioavailability of DOM. BRP and THMFP were measured before and after alum treatment and the results were related to the source of the DOM. It was found that freshly derived terrestrial DOM in synthetic water resulted in higher THMFP and BRP than DOM in reservoir waters. For the samples investigated, conventional alum treatment did not always reduce the THM precursor levels formed in laboratory tests below the NH&MRC (1996) guideline level of 250 microg/L nor produce microbially stable waters.  相似文献   

13.
JE Gu  BM Jun  YN Kwon 《Water research》2012,46(16):5389-5400
Most studies on membrane chlorination have been investigated in an unpressurized chlorination mode, even if the polyamide membrane was continuously exposed to chlorine under high operating pressure in real water/wastewater treatment plants. In this study, performance changes due to polyamide membrane chlorination were investigated in both pressurized and unpressurized chlorination modes. Chlorination in an unpressurized mode showed a flux increase at high pH and a flux decline at low pH due to the compaction and swelling of the polyamide chains, respectively. On the other hand, chlorination performed in a pressurized mode decreased the water flux in both acidic and alkaline conditions, showing that compaction is overwhelming compared to swelling. The permeability of HOCl, a dominant species at low pH, through the polyamide membrane was pH independent and almost similar to the system recovery, but the permeability of OCl, which is dominant at high pH, was maxima at a neutral pH. The different performance behaviors of membranes chlorinated at various pH conditions in the presence or absence of applied pressure could be explained by the permeability of chlorine species and compaction/swelling of polymer chains after chlorination. The effect of membrane chlorination on the chemical property changes at the two different modes was confirmed using attenuated total reflection Fourier transform infrared analysis, and a conceptual model of performance change was proposed to explain the performance discrepancy between the two chlorination modes.  相似文献   

14.
Acero JL  Piriou P  von Gunten U 《Water research》2005,39(13):2979-2993
Halophenols are often reported as off-flavor causing compounds responsible for medicinal taste and odor episodes in drinking water. To better understand and minimize the formation of 2-bromophenol and 2,6-dibromophenol which have low odor threshold concentrations (OTCs, 30 and 0.5 ng/L, respectively) a kinetic data base for the chlorination and bromination of phenols was established by combination of kinetic measurements and data from literature. Second-order rate constants for the reactions of chloro- and bromophenols with chlorine and bromine were determined over a wide pH range. The second-order rate constants for bromination of phenols are about three orders of magnitude higher than for chlorination. A quantitative structure activity relationship (QSAR) showed a good comparability of second-order rate constants from this study with those published previously for different phenol derivatives. The quantification of product distribution of the formed halophenols demonstrated that chlorine or bromine attack in ortho position is favored with respect to the para position. A kinetic model was formulated allowing us to investigate the influence of chlorine dose and some water quality parameters such as the concentration of phenol, ammonia, bromide and the pH on the product distribution of halophenols. The kinetic model can be applied to optimize drinking water chlorination with respect to phenol-born taste and odor problems. In general, high chlorine doses lead to low concentrations of intermediate odorous chlorophenols and bromophenols. An increase in the ammonia or phenol concentration leads to a higher consumption of HOCl and therefore greater final concentration of intermediate bromophenols. The presence of higher bromide than phenol concentration also facilitates the rapid bromination pathway which leads to further bromination of 2,6-dibromophenol to higher brominated phenols. Laboratory-scale experiments on taste and odor formation due to the chlorination of phenol- and bromide-containing waters have confirmed the trend of the model calculations.  相似文献   

15.
Yonkyu Choi 《Water research》2010,44(1):115-122
UV treatment is a cost-effective disinfection process for drinking water, but concerned to have negative effects on water quality in distribution system by changed DOM structure. In the study, the authors evaluated the effects of UV disinfection on the water quality in the distribution system by investigating structure of DOM, concentration of AOC, chlorine demand and DBP formation before and after UV disinfection process. Although UV treatment did not affect concentration of AOC and characteristics of DOM (e.g., DOC, UV254, SUVA254, the ratio of hydrophilic/hydrophobic fractions, and distribution of molecular weight) significantly, the increase of low molecular fraction was observed after UV treatment, in dry season. Chlorine demand and THMFP are also increased with chlorination of UV treated water. This implies that UV irradiation can cleave DOM, but molecular weights of broken DOM are not low enough to be used directly by microorganisms in distribution system. Nonetheless, modification of DOM structure can affect water quality of distribution system as it can increase chlorine demands and DBPs formation by post-chlorination.  相似文献   

16.
Given the presence of nutrients, regrowth of bacteria within a distribution system is possible. The bacterial growth phenomena, which can be studied by developing a multicomponent (substrate, biomass and disinfectant) reaction transport model, is governed by its relationship with the substrate (organic carbon) and disinfectant (chlorine). The multicomponent reaction transport model developed in the present study utilizes the simplified expressions for the basic processes (in bulk flow and at pipe wall) such as bacterial growth and decay, attachment to and detachment from the surface, substrate utilization and disinfectant action involved in the model. The usefulness of the model is further enhanced by the incorporation of an expression for bulk reaction parameter relating it with the organic carbon. The model is validated and applied to study the sensitive behavior of the components using a hypothetical network. The developed model is able to simulate the biodegradable organic carbon threshold in accordance with the values reported in the literature. The spread of contaminant intruded into the system at any location can also be simulated by the model. The multicomponent model developed is useful for water supply authorities in identifying the locations with high substrate concentrations, bacterial growth and lower chlorine residuals.  相似文献   

17.
Naproxen removal from water by chlorination and biofilm processes   总被引:3,自引:0,他引:3  
Boyd GR  Zhang S  Grimm DA 《Water research》2005,39(4):668-676
Naproxen is an anti-inflammatory pharmaceutical that has been detected in natural and engineered aquatic environments. The primary aim of this research was to study chemical transformations of naproxen following chlorine oxidation, which is common in water and wastewater treatment systems. Synthetic waters containing elevated concentrations of naproxen were oxidized by free chlorine at naproxen:chlorine molar ratios of 0.02-3:1 and pH values of 5-9. The formation of naproxen products was dependent on pH, chlorine dosage and contact time. This study demonstrates that naproxen readily reacts with free chlorine and forms disinfection products. The formation of specific reaction products can vary depending on the characteristics of the water or wastewater and treatment operating conditions. More research is needed to identify intermediate and chemical reaction end products and to understand the reaction kinetics of naproxen chlorination for a range of water and wastewater treatment conditions. A secondary aim of this research was to study effects of naproxen and its chlorination products on biofilm processes, which are common in water and wastewater treatment systems and natural aquatic environments. A bioreactor was fed a naproxen solution and then fed a solution at the same naproxen concentration following contact with free chlorine. Results indicate that naproxen was not degraded biologically for the conditions of this study. In contrast, the naproxen solution containing products of chlorination caused an adverse response by discharging biomass from the bioreactor. Results therefore demonstrate that naproxen products of chlorination can adversely affect a biofilm process, which potentially can impact the performance of biofilm processes in natural and engineered aquatic environments. More research is needed to study naproxen chlorination reactions at low concentrations and in complex matrices, and to understand the toxicological relevance of naproxen and its products of chlorination in natural and engineered aquatic environments.  相似文献   

18.
Hospital effluent with its high content of multidrug resistant (MDR) enterobacteria and the presence of enteric pathogens could pose a grave problem for the community. It was planned at our tertiary care hospital in central India to study the population changes at various steps of effluent treatment plant (ETP) like collection, aeration, clarification, liquid sludge, dried sludge, high-pressure filter and treated wastewater. The study included viable bacterial counts, coliform counts, staphylococcal, enterococcal, Pseudomonas and multiple drug resistant (MDR) gram negative bacterial counts in the different stages of ETP. In order to study the distribution of bacteria as free floating in liquid and adherent to suspended particles, enumeration of the bacteria in the filterate and the sediment was also carried out. The effluent input showed 55% of the 8.6 x 10(6)/ml bacteria as coliforms and E. coli which was a typical of fecal flora. The prevalence of MDR coliforms was 0.26%. The substantial reduction (> 3log) was seen for the effluent coming from the clarifier. The bulk of the bacteria in the hospital effluent remains firmly adhered to solid particles; aeration and clarification removes bulk of the bacteria by physical processes like flocculation. The treated liquid effluent still contains sizeable loads of MDR bacteria and inactivation by procedure such as chlorination is required. The bacteria get concentrated in sludge and a greater concentration of chlorine is required for decontamination.  相似文献   

19.
Disinfection practices reduce the incidence of water‐borne diseases but may result in formation of disinfection byproducts (DBPs) in raw water that are reported to be carcinogenic. Central composite design (CCD) was employed in the present study for optimization of disinfectant dose and contact time with the rationale to evaluate if an optimal balance could be achieved between minimal DBPs formation and effective microbial inactivation with either free or combined chlorine in treated water within a lab‐scale prototype network to simulate real water distribution network conditions. After a series of experimental runs based upon design of experiments (DoE) by CCD, dose was found to be the most significant factor (P < 0.01) in determining DBPs formation in both disinfectant’s applications. Where, contact time significantly (P < 0.01) affected bacterial inactivation in chlorination experiments, in contrast, dose was effective in chloramination experiments. Thus, it was concluded that the optimal balance may be achieved in the water networks with the help of multifactorial optimization when disinfectant dose was maintained near 3 mg/L as applied chlorine dose in both disinfection cases, while contact time was 62 and 155 min for chlorine and chloramine, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号