首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Dual Reciprocity Method (DRM) is a technique to transform the domain integrals that appear in the boundary element method into equivalent boundary integrals. In this approach the non-linear terms are usually approximated by mathematical interpolation applied to the convective terms of the form of the Navier–Stokes equations. In this paper we introduce a conservative interpolation scheme that satisfies the continuity equation and performs better than pure mathematical interpolation. The new scheme together with a subdomain variation of the dual reciprocity method allows better approximation of the non-linear terms in the Navier–Stokes equations for moderate Reynolds number. Received: 21 January 2000  相似文献   

2.
The principle of velocity decomposition is used to combine field discretization and boundary-element techniques to solve for steady, viscous, external flows around bodies. The decomposition modifies the Navier–Stokes boundary-value problem and produces a Laplace problem for a viscous potential, and a new Navier–Stokes sub-problem that can be solved on the portion of the domain where the total velocity has rotation. The key development in the decomposition is the formulation for the boundary condition on the viscous potential that couples the two components of velocity. An iterative numerical scheme is described to solve the decomposed problem. Results are shown for the steady laminar flow over a sectional airfoil, a circular cylinder with separation, and the turbulent flow around a slender body-of-revolution. The results show the viscous potential is obtainable even for massively separated flows, and the field discretization must only encompass the vortical region of the total velocity.  相似文献   

3.
A scalable numerical model to solve the unsteady incompressible Navier–Stokes equations is developed using the Galerkin finite element method. The coupled equations are decoupled by the fractional-step method and the systems of equations are inverted by the Krylov subspace iterations. The data structure makes use of a domain decomposition of which each processor stores the parameters in its subdomain, while the linear equations solvers and matrices constructions are parallelized by a data parallel approach. The accuracy of the model is tested by modeling laminar flow inside a two-dimensional square lid-driven cavity for Reynolds numbers at 1,000 as well as three-dimensional turbulent plane and wavy Couette flow and heat transfer at high Reynolds numbers. The parallel performance of the code is assessed by measuring the CPU time taken on an IBM SP2 supercomputer. The speed up factor and parallel efficiency show a satisfactory computational performance.The authors wish to acknowledge Mr. W. K. Kwan of The University of Hong Kong for his help in using the IBM SP2 supercomputer.  相似文献   

4.
This paper describes the solution to transient incompressible two-dimensional Navier–Stokes equations in primitive variables by the dual reciprocity boundary element method. The coupled set of mass and momentum equations is structured by the fundamental solution of the Laplace equation. The dual reciprocity method is based on the augmented thin plate splines. All derivatives involved are calculated through integral representation formulas. Numerical example include convergence studies with different mesh size for the classical lid-driven cavity problem at Re=100 and comparison with the results obtained through calculation of the derivatives from global interpolation formulas. The accuracy of the solution is assessed by comparison with the Ghia–Ghia–Shin finite difference solution as a reference.  相似文献   

5.
Localized differential quadrature (LDQ) method is employed to solve two-dimensional stream function formulation of incompressible Navier–Stokes equations. Being developed by introducing the localization concept to the general differential quadrature (GDQ) method, the employment of LDQ method becomes efficient and flexible, especially for the simulations of large scale computations. By introducing the Lagrange stream function to vorticity transport equation, the governing equation—the fourth-order partial differential equation (PDE)—is derived. To stably obtain the solutions of the fourth-order PDE, a fictitious point method is included to treat the boundary conditions. To examine the present scheme, two different types of classic benchmark fluid flow problems are proposed, including driven cavity flow problems and backward-facing step flow problems. The good agreement of solutions demonstrate the robustness and feasibility of the proposed scheme. Conclusively, the LDQ method is sufficient and appropriate enough to simulate the solutions of stream function formulation of Navier–Stokes equations with various Reynolds numbers.  相似文献   

6.
We present and analyze a two-grid scheme based on mixed finite element approximations for the steady incompressible Navier–Stokes equations. This numerical scheme aims at the simulations of high Reynolds number flows and consists of three steps: in the first step, we solve a finite element variational multiscale-stabilized nonlinear Navier–Stokes system on a coarse mesh, and then, in the second and third steps, we solve Oseen-linearized and -stabilized problems which have the same stiffness matrices with only different right-hand sides on a fine mesh. We provide error bounds for the approximate solutions, derive algorithmic parameter scalings from the analysis, and present some numerical results to verify the theoretical predictions and demonstrate the effectiveness of the proposed method.  相似文献   

7.
8.
This work deals with the convergence acceleration of iterative nonlinear methods. Two convergence accelerating techniques are evaluated: the Modified Mininal Polynomial Extrapolation Method (MMPE) and the Padé approximants. The algorithms studied in this work are iterative correctors: Newton’s modified method, a high-order iterative corrector presented in Damil et al. (Commun Numer Methods Eng 15:701–708, 1999) and an original algorithm for vibration of viscoelastic structures. We first describe the iterative algorithms for the considered nonlinear problems. Secondly, the two accelerating techniques are presented. Finally, through several numerical tests from the thin shell theory, Navier–Stokes equations and vibration of viscoelastic shells, the advantages and drawbacks of each accelerating technique is discussed.  相似文献   

9.
This paper describes a combined boundary element and finite element model for the solution of velocity–vorticity formulation of the Navier–Stokes equations in three dimensions. In the velocity–vorticity formulation of the Navier–Stokes equations, the Poisson type velocity equations are solved using the boundary element method (BEM) and the vorticity transport equations are solved using the finite element method (FEM) and both are combined to form an iterative scheme. The vorticity boundary conditions for the solution of vorticity transport equations are exactly obtained directly from the BEM solution of the velocity Poisson equations. Here the results of medium Reynolds number of up to 1000, in a typical cubic cavity flow are presented and compared with other numerical models. The combined BEM–FEM model are generally in fairly close agreement with the results of other numerical models, even for a coarse mesh.  相似文献   

10.
 A new numerical method is presented in this paper. This method directly solves partial differential equations in the Cartesian coordinate system. It can be easily applied to solve irregular domain problems without introducing the coordinate transformation technique. The concept of the present method is different from the conventional discretization methods. Unlike the conventional numerical methods where the discrete form of the differential equation only involves mesh points inside the solution domain, the new discretization method reduces the differential equation into a discrete form which may involve some points outside the solution domain. The functional values at these points are computed by the approximate form of the solution along a vertical or horizontal line. This process is called extrapolation. The form of the solution along a line can be approximated by Lagrange interpolated polynomial using all the points on the line or by low order polynomial using 3 local points. In this paper, the proposed new discretization method is first validated by its application to solve sample linear and nonlinear differential equations. It is demonstrated that the present method can easily treat different solution domains without any additional programming work. Then the method is applied to simulate incompressible flows in a smooth expansion channel by solving Navier–Stokes equations. The numerical results obtained by the new discretization method agree very well with available data in the literature. All the numerical examples showed that the present method is very efficient, which is suitable for solving irregular domain problems. Received 19 July 2000  相似文献   

11.
12.
《Composites Part B》2013,45(1):604-612
This paper presents experimental research on reinforced concrete (RC) beams with external flexural and flexural–shear strengthening by fibre reinforced polymer (FRP) sheets consisting of carbon FRP (CFRP) and glass FRP (GFRP). The work carried out has examined both the flexural and flexural–shear strengthening capacities of retrofitted RC beams and has indicated how different strengthening arrangements of CFRP and GFRP sheets affect behaviour of the RC beams strengthened. Research output shows that the flexural–shear strengthening arrangement is much more effective than the flexural one in enhancing the stiffness, the ultimate strength and hardening behaviour of the RC beam. In addition theoretical calculations are developed to estimate the bending and shear capacities of the beams tested, which are compared with the corresponding experimental results.  相似文献   

13.
14.
A novel meshless numerical procedure based on the method of fundamental solutions (MFS) is proposed to solve the primitive variables formulation of the Navier–Stokes equations. The MFS is a meshless method since it is free from the mesh generation and numerical integration. We will transform the Navier–Stokes equations into simple advection–diffusion and Poisson differential operators via the operator-splitting scheme or the so-called projection method, instead of directly using the more complicated fundamental solutions (Stokeslets) of the unsteady Stokes equations. The resultant velocity advection–diffusion equations and the pressure Poisson equation are then calculated by using the MFS together with the Eulerian–Lagrangian method (ELM) and the method of particular solutions (MPS). The proposed meshless numerical scheme is a first attempt to apply the MFS for solving the Navier–Stokes equations in the moderate-Reynolds-number flow regimes. The lid-driven cavity flows at the Reynolds numbers up to 3200 for two-dimensional (2D) and 1000 for three-dimensional (3D) are chosen to validate the present algorithm. Through further simulating the flows in the 2D circular cavity with an eccentric rotating cylinder and in the 3D cube with a fixed sphere inside, we are able to demonstrate the advantages and flexibility of the proposed meshless method in the irregular geometry and multi-dimensional flows, even though very coarse node points are used in this study as compared with other mesh-dependent numerical schemes.  相似文献   

15.
This paper presents a dual reciprocity boundary element solution method for the unsteady Navier–Stokes equations in two-dimensional incompressible flow, where a fractional step algorithm is utilized for the time advancement. A fully explicit, second-order, Adams–Bashforth scheme is used for the nonlinear convective terms. We performed numerical tests for two examples: the Taylor–Green vortex and the lid-driven square cavity flow for Reynolds numbers up to 400. The results in the former case are compared to the analytical solution, and in the latter to numerical results available in the literature. Overall the agreement is excellent demonstrating the applicability and accuracy of the fractional step, dual reciprocity boundary element solution formulations to the Navier–Stokes equations for incompressible flows.  相似文献   

16.
17.
18.
Czochralski melt flow is an outcome of complex interactions of centrifugal, buoyancy, coriolis and surface tension forces, which act at different length and time scales. As a consequence, the characteristic flow structures that develop in the melt are delineated in terms of recirculating flow cells typical of rotating Bénard–Marangoni convection. In the present study, Partially Averaged Navier–Stokes (PANS) method is used for the first time to study an idealized Czochralski crystal growth set-up. It is observed that with a reduction in the PANS filter width, more turbulent scales are resolved and the present PANS model is able to resolve almost all the characteristic flow structures in the Czochralski flow at a comparatively lower computational cost compared with more advanced turbulence modelling tools, such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES).  相似文献   

19.
Mg–xAl–2Ca–2Sm (x?=?3, 5, 9 and 15) alloys were tested using an ‘L’-shaped sand mould serving as a hot tearing testing system. The experimental results showed that the solidification range of the Mg–xAl–2Ca–2Sm alloys first decreased and then increased as the Al content was increased. Furthermore, by increasing the Al content, the dendritic arms of the α-Mg phase become more developed, and the hot tearing tendency of the Mg–xAl–2Ca–2Sm alloys increased. In addition, the variety of precipitated phases was seen to be affected by the Al content and the tendency for hot tearing depended on the precipitated phase. The tendency of the Mg–xAl–2Ca–2Sm alloys for hot tearing first decreased and then increased with increasing Al content.  相似文献   

20.
This paper is concerned with the development and implementation of an adaptive solution algorithm for the optimal control of a time-discrete Cahn–Hilliard–Navier–Stokes system with variable densities. The free energy density associated with the Cahn–Hilliard system incorporates the double-obstacle potential which yields an optimal control problem for a family of coupled systems in each time instant of a variational inequality of fourth order and the Navier–Stokes equation. A dual-weighted residual approach for goal-oriented adaptive finite elements is presented which is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Details of the numerical realization of the adaptive concept and a report on the numerical tests are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号