首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
丙烯酸-丙烯酰胺高吸水树脂溶液共聚与吸液性能研究   总被引:2,自引:0,他引:2  
以丙烯酸(AA)和丙烯酰胺(AM)为原料,过硫酸钾为引发剂,N,N-亚甲基双丙烯酰胺为交联剂,采用水溶液聚合对丙烯酸-丙烯酸胺(PAAAM)高吸水树脂的合成条件进行了优化。结果表明,在室温下最大吸蒸馏水倍率为2710g/g,在w(NaCl)=0.9%的水溶液中吸水倍率为133g/g。考察了单体质量分数、交联剂质量分数以及引发剂质量分数对PAAAM在蒸馏水及w(NaCl)=0.9%溶液中吸液性能的影响,并对实验结果进行了回归分析。  相似文献   

2.
以丙烯酸(AA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和高岭土(Kaolin)为原料,采用溶液聚合法分别制备出聚丙烯酸(PAA)高吸水树脂、聚(丙烯酸-co-2-丙烯酰胺基-2-甲基丙磺酸)(P(AA-co-AMPS))高吸水树脂、P(AA-co-AMPS)/Kaolin复合高吸水树脂,并通过傅里叶变换红外光谱、扫描电镜、X射线衍射等测试方法对其结构与性能进行表征。结果表明:Kaolin与P(AA-co-AMPS)高吸水树脂之间为物理共混;PAA高吸水树脂、P(AA-co-AMPS)高吸水树脂和P(AA-co-AMPS)/Kaolin复合高吸水树脂的吸水倍率分别为231,323,357 g/g,吸盐水倍率分别为35.6,64.1,66.4 g/g,保水率分别为51.3%,55.6%,57.9%,凝胶形变量分别为3.75,4.10,2.23 mm;树脂的吸水速率由小到大依次为PAA高吸水树脂、P(AA-co-AMPS)高吸水树脂、P(AA-co-AMPS)/Kaolin复合高吸水树脂。  相似文献   

3.
静置法合成starch/AM/AMPS共聚高吸水树脂   总被引:3,自引:0,他引:3  
以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,通过静置水溶液聚合法制备了淀粉/丙烯酰胺(AM)/2-丙烯酰胺基-2-甲基丙磺酸(AMPS)共聚高吸水树脂。研究了反应条件对树脂吸水性能的影响,所合成的树脂最高吸蒸馏水为1561倍。并通过FTIR、SEM等技术对树脂的分子结构及表面形态进行了表征分析。  相似文献   

4.
采用微波辐射方法制备了2-丙烯酰胺基-2-甲基丙磺酸(AMPS)/丙烯酰胺(AM)高吸水树脂,并用红外光谱进行了表征。探讨了单体配比、交联剂用量、引发剂用量、中和度、反应时间和微波功率对合成高吸水性树脂的影响,对树脂吸水速率进行了研究。结果表明,最佳条件下制备的高吸水性树脂吸蒸馏水倍率达1 495 g/g、吸生理盐水倍率为93 g/g;树脂的吸水倍率随电解质溶液浓度的增加显著下降,对不同阴离子的钾盐溶液而言,按阴离子半径从大到小的顺序依次降低;树脂的吸水倍率与阳离子的价态有关,价态越大,吸水倍率越低。  相似文献   

5.
以过硫酸铵(APS)为引发剂,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,采用反相悬浮乳液聚合法合成了丙烯酸(AA)-丙烯酰胺(AM)-2-丙烯酰胺基辛烷基磺酸钠(NaAMC8S)三元共聚高吸水树脂,研究了引发剂含量、交联剂含量、AA中和度对树脂吸液性能的影响。结果表明:磺酸基单体NaAMC8S的加入显著提高了吸水树脂的盐水吸收能力,当引发剂含量为0.2%,交联剂含量为0.02%,中和度为75%,加入NaAMC8S为0.5%时,共聚树脂吸自来水的量为601mL/g,吸0.9%Nacl水溶液的量为154mL/g。  相似文献   

6.
AM/AMPS/木薯淀粉吸水树脂的研究   总被引:1,自引:0,他引:1  
以木薯淀粉为骨架,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体,通过接枝反应制备淀粉基吸水树脂。结果表明:单体配比,引发剂用量,反应时间,反应温度等因素对吸水树脂的吸夜性能有显著影响。  相似文献   

7.
低成本复合高吸水性树脂的工业化研究   总被引:1,自引:1,他引:0  
以丙烯酸为单体,凹凸棒黏土为复合组分,2,2-偶氮二异丁基脒二盐酸盐(V50)/过硫酸钾/抗坏血酸为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,采用水溶液自由基聚合法,在10 t反应釜内合成了速吸复合高吸水性树脂。结果表明,在w(单体)=42%(即单体质量占加入反应釜中所有物质质量的百分数)、引发温度50℃、w(发泡剂)=0.002%(以单体质量计)和w(交联剂)=0.12%(以单体质量计)的最优反应条件下,复合高吸水性树脂的吸水速率为43 s,2 kPa下吸生理盐水倍率为14.7 g/g。该工艺利用酸碱中和反应热及聚合反应热,可使胶体有效成分质量分数从42%提高到52%,降低了后续工段的蒸气耗量,与传统工艺相比,每生产1 t丙烯酸高吸水树脂总计可降低能耗达164万kJ。  相似文献   

8.
以丙烯酸(AA)、丙烯酰胺(AM)为单体对黄原胶(XG)进行接枝改性,再以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸铵(APS)为引发剂,加入凹凸棒黏土,采用溶液聚合法合成了一种新型复合高吸水性树脂。通过单因素试验研究了AA中和度、交联剂用量、引发剂用量、反应温度和凹凸棒黏土用量等因素对该树脂吸水(吸盐水)性能的影响,利用傅里叶红外光谱(FT-IR)仪、热重分析(TGA)仪对其结构和热性能进行了表征。结果表明:制备高吸水性树脂的最佳工艺条件为AA中和度70%,反应温度70℃,w(交联剂)=0.06%,w(APS)=1.0%,w(凹凸棒黏土)=5%;在最佳工艺条件下制备的高吸水性树脂,其最大吸水倍率、吸盐水倍率分别为827、109 g/g。  相似文献   

9.
以丙烯酰胺(AM)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为单体,过硫酸铵为引发剂,N,N-亚甲基双丙烯酰胺为交联剂,山梨醇酐单硬脂酸酯为分散剂,碳酸氢钠与丙酮为复配成孔剂,采用反相悬浮聚合法制备了AA/AM/AMPS多孔型高吸水树脂,并研究了成孔剂种类、复配成孔剂配比、水与环己烷质量比(简称水油比)、中和度、交联剂用量对高吸水树脂吸液性能的影响。结果表明:在水油比为1.0∶2.5,中和度为73%,交联剂用量为0.3%(w),碳酸氢钠与丙酮质量比为1.0∶1.5时,高吸水树脂的吸水倍率和吸盐倍率达到最高,分别为1732.5,142.9 g/g,且具有较好的保水性能。  相似文献   

10.
以丙烯酸和高岭土为原料,采用水溶液聚合法制备了聚丙烯酸/高岭土复合高吸水树脂,对其结构性能进行了研究。结果表明:当丙烯酸质量分数为20%,高岭土质量分数为10%,过硫酸钾质量分数为0.13%,N,N'-亚甲基双丙烯酰胺质量分数为0.2%,反应温度为80℃,反应时间为3 h时,所制的聚丙烯酸/高岭土复合高吸水树脂表面形貌良好,高岭土分散均匀,吸水倍率为132 g/g,保水率为93.9%,凝胶形变量为2.3 mm;聚丙烯酸高吸水树脂的吸水倍率为121 g/g,保水率为82.5%,凝胶形变量为7.1 mm;高岭土的加入不仅提高了聚丙烯酸树脂的吸水倍率、吸水速率与保水率,且显著提高了聚丙烯酸树脂的凝胶强度。  相似文献   

11.
薛锋锋 《精细化工》2011,28(8):737-741
采用水溶液聚合法,以丙烯酸(AA)、丙烯酰胺(AM)、乙酸乙烯酯(VAc)为单体,有机膨润土(OMMT)为复合微粒,反应得到了P(AA-AM-VAc)/OMMT复合高吸水性树脂。通过单因素实验考察了聚合温度、单体组成、引发剂用量、交联剂用量、丙烯酸中和度、有机膨润土掺入量对复合树脂吸液率的影响,获得了最佳工艺条件。结果表明,在最佳工艺条件下制备的复合高吸水性树脂对纯净水和w(NaC l)=0.9%水溶液的吸收倍率分别为695 g/g和113 g/g。  相似文献   

12.
以丙烯酸和高岭土为原料,用反相悬浮聚合法合成了聚丙烯酸钠/高岭土复合高吸水性树脂。研究了加入高岭土的聚丙烯酸钠复合高吸水性树脂合成中反应温度、中和度、交联剂用量、引发剂用量、高岭土添加量等影响树脂吸水性能的主要因素。结果表明,用反相悬浮聚合法合成的复合高吸水性树脂后处理容易,树脂的吸水率达到512g/g,吸盐水率达到81g/g,吸水速度比不加高岭土提高20%,保水能力提高15%,在250℃加热30min仍能保持原吸水率的95%。用IR和TEM研究了复合高吸水性树脂的表面和结构,TEM显示高岭土的加入对树脂颗粒大小和形状有较大的影响,IR初步表明聚丙烯酸与高岭土产生了交联。  相似文献   

13.
P(AA/AM/APEG)/纳米二氧化硅复合高吸水树脂的合成及性能   总被引:1,自引:0,他引:1  
以丙烯酸(AA)、丙烯酰胺(AM)、烯丙基聚氧乙烯醚(APEG)为单体,再引入纳米二氧化硅(nano-SiO_2),以过硫酸铵为引发剂,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法制备了P(AA/AM/APEG)/纳米二氧化硅有机/无机复合高吸水性树脂,考察了交联剂加量、引发剂加量、纳米二氧化硅加量对树脂吸水倍率的影响,并用红外光谱和扫描电镜对产物进行了表征。结果表明:合成最佳条件加入纳米二氧化硅能提高树脂的吸水性能,粒径在80~120目时,复合树脂吸水倍率达到1 865 g/g,P(AA/AM/APEG)树脂吸水倍率为1 681g/g;温度在20~60℃时,复合吸水树脂吸水倍率变化幅度不大;pH在6~8时,其吸水性能最好,吸水倍率为1 865~1 444 g/g;此外,复合树脂具有较好的保水性能,树脂常温下保存15 d,其保水率达到83.2%。红外光谱和扫描电镜分析表明,纳米二氧化硅成功接枝到聚合物上并形成海绵状结构。  相似文献   

14.
以醚化预处理玉米秸秆(PTCS)为基体,丙烯酸(AA)和丙烯酰胺(AM)为单体,过硫酸钾为引发剂,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法制备PTCS接枝AA、AM共聚物[PTCS-g-P(AA-co-AM)]。研究了合成条件对树脂吸水率的影响,考察了树脂重复吸水和保水性能,并用红外光谱(FTIR)、电子扫描电镜(SEM)表征了产物的结构和形貌。结果表明,在m(PTCS):m(AA):m(AM)= 1:5:2,丙烯酸中和度为70%,K2S2O8为0.6%,MBA为0.2%,60℃反应3h条件下,制备高吸水性树脂的吸水率最大,对蒸馏水和0.9% NaCl水溶液的吸水率分别为144.04g/g、30.60g/g,且重复吸水和保水性能良好。  相似文献   

15.
李仲谨  穆瑞花  李源明  全晓 《精细化工》2007,24(10):1018-1021,1025
研究了凤眼莲与单体丙烯酸(AA)和丙烯酰胺(AM)接枝共聚反应中,凤眼莲与AA和AM质量比、AA与AM质量比、(NH4)2S2O8-NaHSO3用量、K2S2O8用量、AA单体浓度、AA中和度、N,N-亚甲基双丙烯酰胺(MBA)用量、反应温度等因素对树脂吸水性能的影响,探讨了硼酸浓度对树脂吸水效果的影响。结果表明,当凤眼莲与双单体AA、AM质量比为1∶6,AA和AM质量比为3∶1,AA单体浓度为1.6 mol/L,AA中和度为40%,m〔(NH4)2S2O8-NaHSO3〕/m(AA)=0.006 6,m(K2S2O8)/m(AA)=0.011 6,m(MBA)/m(AA)=0.016 6,反应温度为75℃时,制备的高吸水性树脂(SAR)具有良好的吸水性能;硼酸浓度为100μmol/L时SAR具有良好的吸水效果。接枝效率为50.5%,单体转化率为86%,吸水率为450 g/g,吸盐水率为120 g/g;SAR吸水速率快,大约30 min左右即可达到饱和;SAR保水性能好,抑蒸效果显著。  相似文献   

16.
丙烯酸类共聚物超吸水树脂的合成研究   总被引:1,自引:0,他引:1  
用丙烯酸(AA)和丙烯酰胺(AM)作原料,以氢氧化铝为交联剂,过硫酸盐为引发剂,通过溶液聚合法,合成了高吸水性树脂聚(丙烯酸-丙烯酰胺)(P(AA-AM))共聚物。讨论了其在蒸馏水和NaCl水溶液中的吸液性能,考察了单体配比、丙烯酸中和度、交联剂用量、反应温度、引发剂用量等条件对树脂吸水性能的影响。结果表明,最佳合成丁艺为:n(AM):n(AA)为O.3-0.4,AA的中和度为70%,过硫酸钾和单体的质量比为0.2%-0.3%,氢氧化铝和单体的质量比为0.03%-0.05%,聚合温度为55-60℃。测得的吸水倍率为1050g/g。  相似文献   

17.
采用低温等离子体引发水溶性单体甲基丙烯酸二甲氨基乙酯 (DM)盐酸盐及丙烯酰胺(AM)水溶液共聚合 ,制得了吸水率达 110 0g g、吸甲醇率达 46g g、吸乙二醇率达 137g g的高吸水性树脂。考察了聚合条件对树脂吸水性能的影响 ,得出最佳实验条件为 :后聚合时间 =174h ,放电时间 =30s ,放电功率 =10 0W ,w(DM +AM) =44 .0 % ,m(DM)∶m(AM) =4∶1  相似文献   

18.
刘淑琼  林秋月 《广东化工》2013,(24):193-195
本实验采用溶液聚合法,以丙烯酸(AA)和丙烯酰胺(AM)为单体,氢氧化铝作为交联剂,过硫酸钾为引发剂合成高吸水性树脂,并探讨了单体丙烯酰胺与丙烯酸的配比率、丙烯酸的中和度、交联剂用量、聚合温度、引发剂对高吸水树脂吸液性能的影响.结果显示当丙烯酰胺和丙烯酸单体的配比率0.3~0.4,丙烯酸的中和度60 %~70%,交联剂的用量约占单体0.03 %~0.05%,引发剂用量约占单体的0.2%加.3%,聚合温度为55~60℃时,合成树脂的吸水倍率达最大,为995.35 g/g.  相似文献   

19.
丰芸 《精细化工》2013,30(10):1081-1085
以凹凸棒黏土(APT)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,过硫酸钾(KPS)为引发剂,N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,采用微波辐射法接枝共聚合成了APT-g-PAMPS耐盐性复合高吸水性树脂,用FTIR和XRD对复合吸水性树脂的结构进行了表征。考察了微波功率和时间及APT用量对树脂吸水倍率的影响,测定了不同APT用量高吸水性树脂的吸水速率、保水性能及反复吸水性能。FTIR和XRD结果显示,APT和有机单体之间发生了接枝共聚反应,其反应仅在APT的表面进行,单体并没有插入到APT的层间。结果表明,微波功率为195 W,辐射时间为2.5 min,w(APT)=5%时,树脂在去离子水和生理盐水中的吸水倍率分别为987g/g和102 g/g。该复合高吸水性树脂具有较快的吸水速率、较强的保水性能和较好的反复吸水性能。在体系中引入适量APT能够显著提高复合吸水树脂的吸水能力和耐盐性能,同时能明显加快树脂的吸水速率和提高树脂的保水性能。  相似文献   

20.
A novel poly(acrylic acid‐co‐acrylamide)/halloysite nanotubes [PAA‐AM/HNTs] superabsorbent composite was synthesized by free radical polymerization with using HNTs as an inorganic additive. The composite was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, and thermogravimetric analysis. The results revealed that HNTs and PAA‐AM were combined well together to form a porous structure with a pore size of about 10 μm, and HNTs were uniformly distributed in the composite. The thermal stability was improved by adding HNTs in the composite. The influences of contents of initiator and halloysite, neutralization degree of AA, and molar ratio of AM to AA on water absorbency were investigated. The water absorbency and the water retention capacity were improved after adding HNTs into PAA‐AM. The composite containing 10% HNTs had the highest water absorbency of 1276 g/g in distilled water. Moreover, PAA‐AM/HNTs composite also had a high swelling rate within 60 min and could maintain 78% initial swelling capability after five reswelled test. The substantial enhancement of swelling properties enables PAA‐AM/HNTs suitable for numerous practical applications. POLYM. COMPOS., 36:229–236, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号