首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用压力融渗的方法制备了高金刚石体积分数的Diamond/ Cu-Cr复合材料.研究了金刚石粒径对复合材料热导率的影响,并依据理论模型计算了界面热阻值.实验结果显示,金刚石颗粒平均粒径分别为40μm,100μm,200μm的Diamond/Cu-Cr复合材料的热导率依次增高,与理论模型计算结果一致.其中,颗粒粒径为200μm的Diamond/Cu-Cr复合材料的热导率达到736.15W/mK.当金刚石的颗粒粒径增大时,其比表面积降低,由于金刚石与基体合金接触的表面热阻高,减少金刚石表面积有助于提高复合材料的热导率.但是,当金刚石的颗粒粒径增大到一定程度时,复合材料二次加工的难度增大,表面质量降低,对工业应用造成困难.  相似文献   

2.
采用纯粉末, 通过SPS烧结制备了组织均匀、致密且体积分数高的SiCp/Al电子封装材料. 通过对SPS烧结现象的研究, 认为该复合材料的SPS烧结过程属于反应性烧结, 大部分收缩在极短时间内完成; 另外对SiC体积分数和SiC颗粒尺寸对热导率、热膨胀系数的影响进行了研究, 发现SiC体积分数越高, 复合材料的热导率和热膨胀系数越低; SiC颗粒粒径增大, 复合材料的热导率增高, 而热膨胀系数减小.  相似文献   

3.
放电等离子烧结制备高导热SiC_P/Al电子封装材料   总被引:1,自引:0,他引:1       下载免费PDF全文
为了满足电子封装材料越来越高的性能要求,采用放电等离子烧结(SPS)工艺制备了SiCP/Al复合材料。研究了烧结温度和保温时间等工艺条件对SiCP/Al复合材料组织形貌和性能的影响。结果表明:采用SPS烧结,温度为700℃、保温时间为5 min时,所制备的70 vol%SiCP/Al复合材料热导率达到195.5 W(m.K)-1,与传统15%W-Cu合金相当,是Kovar合金的10倍,但密度小,仅为3.0 g.cm-3;其热膨胀系数为6.8×10-6K-1,与基板材料热膨胀系数接近;抗弯强度为410 MPa,抗拉强度为190 MPa,达到了电子封装材料对热学性能和力学性能的要求。  相似文献   

4.
刘永正 《材料导报》2013,27(4):8-11
采用无压浸渗工艺制备出低成本金刚石/铝复合材料,并对复合材料的显微组织、界面及导热性能进行了研究。实验结果表明,采用无压浸渗工艺制备的金刚石/铝复合材料,组织致密,颗粒分布均匀。金刚石/铝复合材料的热导率随着金刚石含量的增加而增加,热导率最高可达298W/(m·K)。  相似文献   

5.
采用真空热压法制备了金刚石体积分数为63%的金刚石/Cu-Ti复合材料,研究了基体中Ti含量对金刚石/Cu-Ti复合材料界面显微结构和热导率的影响。随着Ti含量的增加,金刚石/Cu-Ti复合材料热导率先增加后减小。当基体中Ti含量为1.1wt%时热导率最高,为511 W/(m·K)。Ti含量小于1.1wt%时,烧结过程中两相界面间生成的碳化物数量和面积随Ti含量的增加而增加,优化了界面结合,提高了界面结合强度,增加了界面传热通道数量,使金刚石/Cu-Ti复合材料导热性能提高。Ti含量的增加同时伴随着碳化物热阻增加和基体导热性能的恶化。过量的Ti元素使低导热性能的碳化物层厚度增加,碳化物层本身热阻增加,界面热导降低,金刚石/Cu-Ti复合材料导热性能下降。  相似文献   

6.
赵龙  宋平新  张迎九  杨涛 《材料导报》2018,32(11):1842-1851
随着电子行业的不断发展,第二代热沉材料如钨/铜封装材料、钼/铜封装材料、碳化硅/铝封装材料等已不能满足该领域日益增长的需求。金刚石的热导率为2 300 W/(m·K),是已知热导率最高的物质;铜的热导率为401 W/(m·K),在众多金属中仅次于Ag。金刚石/铜复合材料具有诸多优点:(1)热导率高、强度大;(2)热膨胀系数能够通过改变金刚石与铜的体积分数加以调控,以实现与硅、锗等半导体材料的匹配;(3)具有比金刚石/银复合材料更低的成本以及比金刚石/铝、钨/铜、钼/铜等材料更高的热导率。因此,金刚石/铜复合材料是一种理想的电子封装候选材料。金刚石/铜复合材料的制备技术多种多样,其中粉末冶金、放电等离子体烧结、液相渗透是最适合该复合材料特性也是研究最广泛的技术。液相渗透法又分为无压熔渗法和压力辅助熔渗法,与粉末冶金法和放电等离子体烧结法相比,该法成本低、操作性强,成为近年研究的重点方向。目前,国际上已制备出热导率高达900 W/(m·K)的金刚石/铜复合材料。另一方面,金刚石与铜界面润湿度较差,导致复合材料致密度不高且热导率不易提升。解决金刚石与铜界面润湿度较差的问题成为制备金刚石/铜复合材料的关键,也促使国内外研究者不断尝试在制备工艺环节引入改进措施。目前已探索出两种较为可行的方法:(1)在复合材料制备过程中添加少量B、Cr等活性元素,使这些活性元素与铜形成合金;(2)在制备金刚石/铜复合材料之前,采用化学镀、扩散烧结、盐浴、磁控溅射等手段预先在金刚石表面包覆一层均匀的碳化物。本文总结了金刚石/铜复合材料的国内外最新研究进展及主流制备技术,论述了影响复合材料的热膨胀系数及热导率的主要因素。文章还介绍了改善金刚石与铜的界面润湿度的方法,最后对金刚石/铜复合材料的发展进行了展望。  相似文献   

7.
通过对金刚石进行两次施镀,首先采用磁控溅射的方法在金刚石表面镀Cr,然后将镀Cr金刚石放入滚筒内进行铜元素滚镀加厚;镀铜后的金刚石与铜的质量比可达到1∶1~1∶2,铜镀层的厚度可达3~20μm。将镀铜金刚石直接放入模具中进行放电等离子(SPS)烧结,得到金刚石-铜复合材料,经测定,该复合材料的热导率可达480W/(m.K)。该工艺能很好地解决金刚石与铜因为密度相差大而混合不均匀问题,极大地提高了材料的热导率。  相似文献   

8.
AlN/玻璃复合材料的相分布对导热性能的影响   总被引:2,自引:0,他引:2  
以热压烧结方法在850~1000℃的低温下制备了Al/玻璃复合材料,通过组成变化研究了复合材料热导率的变化规律,利用SEM、TEM、XRD等方法观察了AlN/玻璃复合材料的显微结构和相组成与分布,讨论了复合材料的显微结构和相组成对热导率的影响,结果表明:AlN/玻璃复合材料的热导率随玻璃相的减少而增加,低温烧结的复合材料的热导率可以达到10W/m·K以上,材料的相分布对热导率的影响表现为:当玻璃相减少,AlN晶粒相互接触时,有利于热导率的提高;当材料内部以AlN晶相为主时,材料出现晶体的导热特征,即热导率随温度的升高而下降。  相似文献   

9.
用Al_2O_3作为界面修饰剂,通过反应烧结,在SiC颗粒之间形成莫来石界面,制备SiC预制件,采用无压熔渗法制备3D-SiC/Al互穿式连续结构复合材料。基于正交实验研究了Al_2O_3添加量、预制件烧结时间、熔渗温度和熔渗时间对3D-SiC/Al复合材料抗弯强度和热导率的影响。实验结果表明,Al_2O_3添加量对复合材料抗弯强度和热导率影响显著,复合材料获得最大抗弯强度344 MPa和热导率165 W/(m·K)的制备工艺为:氧化铝添加量2.0%(原子分数),预制件烧结时间2h,熔渗温度950℃,熔渗时间1h。  相似文献   

10.
采用粉末冶金法在高温热压炉中制备金刚石/铜复合材料,研究了钛镀层、烧结温度、金刚石颗粒体积分数对金刚石/铜复合材料热导率的影响。结果表明:钛镀层能改善金刚石/铜复合材料的界面浸润性,降低孔隙率,提高热导率。烧结温度低于980℃时,烧结驱动力不足,致使金刚石/铜复合材料的致密度下降,热导率降低;烧结温度高于980℃时,由...  相似文献   

11.
Cu/diamond composites were fabricated by spark plasma sintering (SPS) after the surface pretreatment of the diamond powders, in which the diamond particles were mixed with copper powder and tungsten powder (carbide forming element W). The effects of the pretreatment temperature and the diamond particle size on the thermal conductivity of diamond/copper composites were investigated. It was found that when 300 μm diamond particles and Cu–5 wt.% W were mixed and preheated at 1313 K, the composites has a relatively higher density and its thermal conductivity approaches 672 W (m K)−1.  相似文献   

12.
采用气体压力浸渗法制备了金刚石/Al、金刚石/AlSi7和金刚石/AlSi9复合材料,对比研究了其暴露在空气中的性能衰退行为。研究表明,界面反应产物Al4C3会潮解生成Al(OH)3,增大界面热阻,导致金刚石/Al复合材料性能衰退。Al基体中添加Si元素可以显著降低其性能衰退速率,其机制为:金刚石中C元素在Al液中溶解度的降低和Si在金刚石颗粒表面的优先析出,抑制了Al4C3的生成量;此外,金刚石/AlSi复合材料致密度的提高,对Al4C3与水汽的接触起到阻碍作用。讨论了抑制金刚石/Al复合材料性能衰退的几种可行方法,有望进一步提高其在潮湿环境中的使用寿命。   相似文献   

13.
C. Xue  J.K. Yu  X.M. Zhu 《Materials & Design》2011,32(8-9):4225-4229
The diamond/SiC/Al composites with high volume fractions and a large ratio of diamond to SiC particle size (7.8:1) were fabricated by gas pressure infiltration. The results show that the fine SiC particles occupy efficiently the interstitial positions around coarse diamond particles; the main fracture mechanism of the composite is matrix ductile fracture, and diamond brittle fracture was observed which confirms a high interfacial bonding strength; the diamond/SiC/Al composites with 80% and 66.7% volume fraction of diamond in the reinforcement have the higher volume fraction in the reinforcement and lower coefficient of thermal expansion compared to the diamond/Al composite. Turner and Kerner models are not in good agreement with the experimental data for the composites based on reinforcement with two phases different in shape and component. When the effect of the coating layer considered, differential effective medium (DEM) model is confirmed a reliable model in designing a composite with a given thermal conductivity based on reinforcement with two phases different in size.  相似文献   

14.
研究了采用不同放电等离子烧结(SPS)工艺获得的单质金属(Ni、Cu、Ag、Al)电极与Mg-Si-Sn基热电材料结合界面的微观形貌和成分分布特征, 测试了合金(Ni-Al、Cu-Al)、金属/合金复合电极材料的热膨胀系数、电导率和热导率等物性参数。实验结果表明: 通过SPS烧结可以有效实现电极材料与Mg-Si-Sn基材料的连接, 复合电极材料Ni-Al/Al(60:40)和Cu-Al/Cu(45:55)具有高的电导率和热导率, 并且热膨胀系数与Mg-Si-Sn基热电材料相匹配, 有可能成为Mg-Si-Sn基材料的较理想电极材料。  相似文献   

15.
Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10−6 to 6 × 10−6/K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al2Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.  相似文献   

16.
The existence of interfacial carbides is a well-known phenomenon in Al/diamond composites, although quantitative analyses are not described so far. The control of the formation of interfacial carbides while processing Al(Si)/diamond composites is of vital interest as a degradation of thermophysical properties appears upon excessive formation. Analytical quantification was performed by GC–MS measurements of gaseous species released upon dissolving the matrix and interfacial reaction products in aqueous NaOH solutions and the CH4/N2 ratio of the evolving reaction gases can be used for quantification. Although the formation of interfacial carbides is significantly suppressed by adding Si to Al, also a decline in composite thermal conductivity is observed in particular with increasing contact time between the liquid metal and the diamond particles during gas pressure infiltration. Furthermore, surface termination of diamond particles positively affects composite thermal conductivity as oxygenated diamond surfaces will result in an increase in composite thermal conductivity compared to hydrogenated ones. In order to understand the mechanisms responsible for all impacts on the thermal conductivity and thermal conductance behaviour, the metal/diamond interface was electrochemical etched and characterized by SEM. Selected specimens were also cut by an ultrashort pulsed laser system to characterize interfacial layers at the virgin cross section in the reactive system Al/diamond.  相似文献   

17.
由机械合金化法(MA)制得纳米级Al2O3颗粒弥散镶嵌于微米级Cu颗粒表面的复合粉末, 利用球形化工艺改善所制得复合粉的形貌及粒度范围, 分别采用热压法(HP)和放电等离子体烧结(SPS)法制备Al2O3/Cu复合材料。通过测试密度、 电导率、 抗弯强度及SEM复合粉形貌和烧结体断口分析、 微区成分分析, 对比研究了Al2O3质量分数分别为0%、 0.5%、 1.0%、 1.5%时Al2O3/Cu复合材料的物理、 力学和电学性能。结果表明: 不同制备工艺下随着Al2O3含量增加, 材料的抗弯强度先增后降, 电导率除受杂质影响外, 还受材料缺陷的影响, 故变化规律不明显, 对于Al2O3含量相同的Al2O3/Cu复合材料, 采用SPS法制备的复合材料的致密度、 抗弯强度及电导率均高于HP法; 在弯曲应力下两种制备方法所得复合材料均发生延性断裂。   相似文献   

18.
Diamond/Al composites were prepared by vacuum hot pressing (VHP) to get high thermal properties. The sintering temperature, pressure and time in the VHP process were optimized. Microstructures, thermal properties, interface reaction product and its effect on the properties of the composites were investigated. The result shows that the sintering temperature and time are key parameters to get high thermal property of the composites. The composites with 20–55 vol% diamond sintered at 650 °C for 90 min under a pressure of 67 MPa exhibit thermal conductivities of 320–567 W/mK, over 90% of the theoretical predictions by the differential effective medium (DEM) scheme. The high thermal conductivity is attributed to the favorable interface conductance, while the formation of aluminum carbide at diamond–Al interface is found to be negative.  相似文献   

19.
Silicon carbide (SiC)-particle-dispersed-aluminum (Al) matrix composites were fabricated in a unique fabrication method, where the powder mixture of SiC, pure Al and Al–5mass% Si alloy was uniquely designed to form continuous solid–liquid co-existent state during spark plasma sintering (SPS) process. Composites fabricated in such a way can be well consolidated by heating during SPS processing in a temperature range between 798 K and 876 K for a heating duration of 1.56 ks. Microstructures of the composites thus fabricated were examined by scanning electron microscopy and no reaction was detected at the interface between the SiC particle and the Al matrix. The relative packing density of the Al–matrix composite containing SiC was higher than 99% in a volume fraction range of SiC between 40% and 55%. Thermal conductivity of the composite increased with increasing the SiC content in the composite at a SiC fraction range between 40 vol.% and 50 vol.%. The highest thermal conductivity was obtained for Al–50 vol.% SiC composite and reached 252 W/mK. The coefficient of thermal expansion of the composites falls in the upper line of Kerner’s model, indicating strong bonding between the SiC particle and the Al matrix in the composite.  相似文献   

20.
Aluminum nitride-particle-dispersed aluminum–matrix composites were fabricated in a unique fabrication method, where the powder mixture of AlN, pure Al and Al–5 mass%Si alloy was uniquely designed to form continuous solid–liquid co-existent state during spark plasma sintering (SPS) process. Composites fabricated in such a way can be well consolidated by heating during SPS processing in a temperature range between 798 K and 876 K for a heating duration of 1.56 ks. Microstructures of the composites thus fabricated were examined by scanning electron microscopy and no reaction product was detected at the interface between the AlN particle and the Al matrix. The relative packing density of the Al/AlN composite was almost 100% when volume fraction of AlN is between 40% and 60%. Thermal conductivity of the composite was higher than 180 W/mK at an AlN fraction range between 40 and 65 vol.%, approximately 90% of the theoretical thermal conductivity estimated by Maxwell–Eucken’s model. The coefficient of thermal expansion of the composite falls in the upper line of Kerner’s model, indicating strong bonding between the AlN particle and the Al matrix in the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号