共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
MEMS技术的现状和发展趋势 总被引:10,自引:0,他引:10
MEMS技术是一门新兴的技术 ,近年来 ,越来越受到世界各国的重视。主要介绍了MEMS的发展背景、研究内容、特点、现状和发展趋势 相似文献
5.
6.
介绍了一种串联电容式RF MEMS开关的设计与制造。所设计的串联电容式RF MEMS开关利用薄膜淀积中产生的内应力使MEMS桥膜向上发生翘曲,从而提高所设计的开关的隔离度,克服了串联电容式RF MEMS开关通常只有在1GHz以下才能获得较高隔离度的缺点。其工艺与并联电容式RF MEMS开关完全相同,解决了并联电容式RF MEMS开关不能应用于低频段(<10GHz)的问题。其插入损耗为-0.88dB@3GHz,在6GHz以上,插入损耗为-0.5dB;隔离度为-33.5dB@900MHz、-24dB@3GH和-20dB@5GHz,适合于3~5GHz频段的应用。 相似文献
7.
8.
9.
10.
11.
12.
This article presents an inductively loaded radio frequency (RF) microelectromechanical systems (MEMS) reconfigurable filter with spurious suppression implemented using packaged metal‐contact switches. Both simulation and measurement results show a two‐state, two‐pole 5% filter with a tuning range of 17% from 1.06 GHz to 1.23 GHz, an insertion loss of 1.56–2.28 dB and return loss better than 13 dB over the tuning range. The spurious passband response in both states is suppressed below ?20 dB. The unloaded Q of the filter changes from 127 to 75 as the filter is tuned from 1.06 GHz to 1.23 GHz. The design and full‐wave simulation of a two‐bit RF MEMS tunable filter with inductively loaded resonators and monolithic metal‐contact MEMS switches is also presented to prove the capability of applying the inductive‐loading technique to multibit reconfigurable filters. The simulation results for a two‐bit reconfigurable filter show 2.5 times improvement in the tuning range compared with the two‐state reconfigurable filter due to lower parasitics associated with monolithic metal‐contact MEMS switches in the filter structure. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009. 相似文献
13.
14.
应用于MEMS的芯片倒装技术 总被引:1,自引:0,他引:1
通过对芯片倒装技术尤其是凸点加工工艺在MEMS设计中的作用进行实例分析,指出倒装芯片不仅是一种高性能的封装模式,还能为MEMS器件提供立体通道或是力热载体,并形成许多特殊的结构.在MEMS的加工过程中,可以充分考虑芯片倒装技术所带来的加工便利. 相似文献
15.
Har Dayal 《国际射频与微波计算机辅助工程杂志》2004,14(1):64-72
This article discusses the development of an electronically tuned filter capable of a wide tunable frequency range and simultaneous 3-dB bandwidth variations at any frequency within its tuning range. Varactor-tunable filters are designed using high-dielectric, soft-substrate material for printed resonators as well as also high-Q ceramic resonators, and their test data are compared. Greater than 50% tuning range with low insertion loss at a center frequency in the L and S frequency bands is demonstrated with a 4:1 change in 3-dB bandwidth—30 to 120 MHz for printed resonators and 14 to 46 MHz for ceramic resonators. The concept of tuning a filter's 3-dB bandwidth with voltage is demonstrated and the effect of the bandwidth tuning elements on the tunable filter performance is discussed. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 14, 64–72, 2004. 相似文献
16.
17.
This article presents the response of RF microelectromechanical systems (RF MEMS), barium strontium titanate (BST), and gallium arsenide (GaAs)‐based tunable filters and reconfigurable matching networks to a wideband code‐division‐multiple‐access signal centered at 1.95 GHz. The RF MEMS tunable filter and impedance tuner result in very low intermodulation distortion and spectral regrowth compared to their BST and GaAs counterparts. The linearity of the BST and GaAs tunable networks improves considerably by using a series combination of BST and GaAs varactors, but the RF MEMS‐based networks still show the best linearity of all three technologies. Also, it is shown that the reconfigurable networks, tuned with capacitive RF MEMS can handle up to 1 W of RF power with no self‐actuation. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008. 相似文献
18.