共查询到20条相似文献,搜索用时 0 毫秒
1.
A 3D parametric finite element model of the pipeline and soil is established using finite element method to perform the failure analysis of natural gas buried X65 steel pipeline under deflection load. The pipeline is assumed to be loaded in a parabolic deflection displacement along the axial direction. Based on the true stress–strain constitutive relationship of X65 steel, the elastic–plastic finite element analysis employs the arc-length algorithm and non-linear stabilization algorithm respectively to simulate the strain softening properties of pipeline after plastic collapse. Besides, effects of the soil types and model sizes on the maximum deflection displacement of pipeline are investigated. The proposed finite element method serves as a base available for the safety design and evaluation as well as engineering acceptance criterion for the failure of pipeline due to deflection. 相似文献
2.
Stochastic seismic analysis of long-span bridges with Carbon fibre reinforced polymer (CFRP) cables are presented in this study through combination of the advantages of the perturbation based stochastic finite element method (SFEM) and Monte Carlo simulation (MCS) method. Jindo cable-stayed and Fatih Sultan Mehmet (Second Bosporus) suspension bridges are chosen as an example. Carbon fibre reinforced polymer cable (CFRP) and steel cables are used separately, in which the cable’s cross sectional area is determined by the principle equivalent axial stiffness. Geometric nonlinear effects are considered in the analysis. Uncertainties in the material are taken into account and Kocaeli earthquake in 1999 is chosen as a ground motion. The efficiency and accuracy of the proposed algorithm are validated by comparing with results of MCS method. It can be stated that using of CFRP cables in long-span bridges subjected to earthquake forces is feasible. 相似文献
3.
A new boundary element technique based on Green's formula is applied to the analysis of nonlinear water wave problems. The problems are formulated mathematically as two-dimensional nonlinear initial-boundary value problems in terms of a velocity potential, assuming the fluid to be inviscid and incompressible, and the flow to be irrotational. In the present paper, two kinds of wave-making problems are analysed: (1) a tsunami generated by sea bed elevation; (2) generation, propagation and run-up on a vertical wall of a solitary wave. Numerical results obtained by the present method are compared with available experimental data and analytical solutions. Excellent agreements are obtained. 相似文献
4.
Life prediction for GH4169 superalloy thin tubular and notched specimens were investigated under proportional and nonproportional loading with elastic–plastic finite element analysis (FEA). A strain-controlled tension–torsion loading was carried out by applying the axial and circular displacements on one end of the specimen in the cylindrical coordinate system. Uniaxial cyclic stress–strain data at high temperature were used to describe the multi-linear kinematic hardening of the material. The comparison between FEA and experimental results for thin tubular specimen showed that the built model of FE is reliable. A fatigue damage parameter was proposed to predict the fatigue crack initiation life for notched specimen. The results showed that a good agreement was achieved with experimental data. 相似文献
5.
The nonlinear Galerkin methods are investigated in the framework of finite element discretization We first describe the theoretical background in relation with multilevel and finite element approximations of attractors. Then on the computational side, we recall the definition of the hierarchical bases and analyze the structure associated to these bases. Finally we present the schemes and report on numerical experiments performed on two-dimensional equations of the Burgers and Navier-Stokes type. Their consistency with the approximation that we make and with the structure of the algorithm is discussed. 相似文献
6.
This paper represents a modified formulation of the wave finite element (WFE) method for propagating analysis of thermoelastic waves in a hollow cylinder without energy dissipation. The 2D-high-order spectral element with the Gauss–Legendre–Lobatto integration is applied into the WFE method, which produces the diagonal mass matrix. Based on the assumption of harmonic displacement fields by Fourier series expansion, the general discretization wave equation is simplified from the 3D problem to 2D. Dispersion properties of elastic wave propagation in the hollow cylinder are computed considering the choice of the spectral element orders, and the results indicate the high efficiency and high accuracy of the modified formulation compared with that of the software Disperse. Then, using the modified formulation, the thermoelastic dynamic equation of the cylinder is derived from the generalized thermoelasticity theory. The propagation of the thermoelasticwave (including two kinds of wave modes) in the cylinder without energy dissipation is discussed in differentcases. Finally, wave structures along the radial direction of thermoelastic wave modes are shown at thenondimensional frequency 1.25, which can be used for the recognition of different modes. 相似文献
7.
建立多种车辆和护栏有限元仿真模型,运用多次碰撞试验数据对仿真模型计算结果进行比对,对采用有限元仿真方法评价护栏安全性能的可行性进行分析。研究结果表明,仿真计算可以得到车辆行驶轨迹、结构防护导向、乘员风险和动态变形等护栏安全评价的各项指标,仿真结果与试验结果一致,误差在10%以内,验证了建模方法的正确性,运用有限元仿真方法评价护栏安全性能具有较高可行性。强调运用评价护栏安全性能的仿真模型须通过碰撞试验校核,同时建议通过法规和准则对从事护栏评价CAE工程师进行职业管理。 相似文献
8.
旨在建立能够正确预计复合材料圆柱壳的屈曲和后屈曲渐进破坏行为的模拟策略。采用有限元方法和Hashin失效准则进行模拟,基于该失效准则编写了用户材料子程序,然后插入到商用有限元软件ABAQUS中。分析了中心受横向集中载荷作用复合材料圆柱壳板,壳板的2条直边弹性支持,2条曲边自由。为了探讨弹性边界条件和集中载荷作用点应力集中的影响,将有限元分析结果与文献中的试验结果进行了比较,提出了一种合理的弹性边界选取依据。研究结果表明,在建模中考虑了弹性边界和集中载荷作用点处存在的应力集中后,本文中模拟的结果与文献中的试验结果比较接近,模拟精度明显高于文献中报道的结果。这也验证了本文中建立的模拟策略的合理性。 相似文献
9.
The non-linear response of soft hydrated tissues under physiologically relevant levels of mechanical loading can be represented by a two-phase continuum model based on the theory of mixtures. The governing equations for a biphasic soft tissue, consisting of an incompressible solid and an incompressible, inviscid fluid, under finite deformation are presented and a finite element formulation of this highly non-linear problem is developed. The solid phase is assumed to be hyperelastic, and the stress-strain relations for the solid phase are defined in terms of the free energy function. A finite element model is formulated via the Galerkin weighted residual method coupled with a penalty treatment of the continuity equation for the mixture. Using a total Lagrangian formulation, the non-linear weighted residual statement, expressed with respect to the reference configuration, leads to a coupled non-linear system of first order differential equations. The non-linear constitutive equation for the solid phase elasticity is incrementally linearized in terms of the second Piola-Kirchhoff stress and the corresponding Lagrangian strain. A tangent stiffness matrix is defined in terms of the free energy function; this matrix definition can be applied to any free energy function, and will yield a symmetric matrix when the free energy function is convex. An unconditionally stable implicit predictor-corrector algorithm is used to obtain the temporal response histories. The confined compression mechanical test of soft tissue in stress relaxation is used as an example problem. Results are presented for moderate and rapid rates of loading, as well as small and large applied strains. Comparison of the finite element solution with an independent finite difference solution demonstrates the accuracy of the formulation. 相似文献
10.
A nonlinear analysis of high-frequency thickness-shear vibrations of AT-cut quartz crystal plates is presented with the two-dimensional finite element method. The Mindlin plate equations are truncated to the first-order ones as an approximation, and then they are used for the formulation of nonlinear finite element analysis with all zero- and first-order displacements. The matrix equation of motion is established with the first-order harmonic approximation, and the generalized nonlinear eigensystem is solved by a direct iterative procedure. A displacement amplitude versus frequency curve and corresponding mode shapes are obtained and examined. The nonlinear finite element program is developed based on the earlier linear edition and can be utilized to predict nonlinear characteristics of miniaturized quartz crystal resonators in the design process. 相似文献
11.
A method of inverse finite element analysis is used to determine the constitutive relationship of SFRC in tension, using primary
experimental data. Based on beam bending test results and results from pull-out tests, an attempt is made to explain the physical
processes taking place during the cracking stage. Basic models predicting the behaviour of SFRC in tension are proposed. 相似文献
12.
对桥梁墩柱在近断层水平多脉冲地震动激励下的响应特征进行了研究。采用多脉冲小波分析方法从选取的22组地震动中识别出17组为脉冲型近断层地震动并确定了相关参数。采用时域叠加小波方法将这些时程与目标反应谱匹配得到匹配时程,通过匹配前后的时程和反应谱对比验证了匹配的有效性。基于Open Sees建立了四根桥梁墩柱模型并通过模态分析与Pushover分析验证了模型的合理性与准确性,加载匹配后的地震激励并分析其响应特征。分析表明,匹配时程的反应谱与目标反应谱基本一致,模型与试验的位移延性能力相对误差不超过5%。水平面内脉冲能量最强方向的地震输入能量大于水平面其他方向的输入能量,结构对应的地震需求也最大。从位移延性需求的角度应考虑水平最强能量的输入方向,抽取一个主要脉冲波形来替代原地震输入的做法偏于危险,应考虑多脉冲形式来代替单脉冲形式。 相似文献
13.
The dispersive properties of finite element semidiscretizations of the two-dimensional wave equation are examined. Both bilinear quadrilateral elements and linear triangular elements are considered with diagonal and nondiagonal mass matrices in uniform meshes. It is shown that mass diagonalization and underintegration of the stiffness matrix of the quadrilateral element markedly increases dispersive errors. The dispersive properties of triangular meshes depends on the mesh layout; certain layouts introduce optical modes which amplify numerically induced oscillations and dispersive errors. Compared to the five-point Laplacian finite difference operator, rectangular finite element semidiscretizations with consistent mass matrices provide superior fidelity regardless of the wave direction. 相似文献
14.
International Journal of Mechanics and Materials in Design - An efficient three-dimensional (3D) multiscale method has been introduced to simulate the geometrically nonlinear behaviors of the plant... 相似文献
15.
Recently, a new finite element for modelling axisymmetric circular plates was developed. 1 The elements were based on Mindlin's shear-deformable plate theory, and unlike most conventional plate elements, these new elements could be stacked on top of one another to model laminated plates. The elements assured continuity of the displacements between the layers, but not continuity of the traction vectors. Neither interlaminar slip nor debonding between the layers was considered. In this paper, these new plate elements are incorporated into a Von Karman-type plate theory. The elements may be used to model problems where the membrane stresses play an important role in determining the plate's deflection. For example, it is well-known that for a homogeneous, isotropic plate the membrane stresses begin to affect the deflections when the deflections reach about half the thickness of the plate. For laminated plates, regardless of the magnitude of the deflections, the membrane stresses are present in each layer to balance the interlaminar shear stresses. In this paper, the behavior of these membrane stresses and their influence on the deflections of laminated circular plates are investigated. 相似文献
16.
This research present the development of geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates. First-order, shear-deformable laminate composite plate theory is utilized in deriving the governing equations using a variational formulation. Geometric nonlinearity is accounted for in Von-Karman sense. A family of NURBS elements are constructed from refinement processes and validated using various examples. k-refined NURBS elements are developed to study thin plates. Isotropic, orthotropic and laminated composite plates are studied for various boundary conditions, length to thickness ratios and ply-angles. Computed center deflection is found to be in an excellent agreement with the literature. For thin plate analysis, linear and k-refined quadratic NURBS element is found to remedy the shear locking problem. k-refined quadratic NURBS element provide stabilized response to distorted, coarse meshes without increasing the order of the polynomial, owing to the increased smoothness of solution space. 相似文献
17.
The finite element method using a singular element near the crack tip is extended to the elastodynamic problems of cracks where the displacement function of the singular element is taken from the solution of a propagating crack. The dynamic stress intensity factor for cracks of mode III or mode I deformations in a finite plate is determined.The results of computation for stationary cracks or propagating cracks under dynamic loadings are compared with the analytical solutions of other authors. It is shown that the present method satisfactorily describes the time variation of the stress intensity factor in dynamic crack problems.
Résumé La méthode des éléments finis utilisant un élément singulier au voisinage de l'extrémité d'une fissure a été étendue aux problèmes élastodynamiques des fissures tels qu'ils se posent lorsque la fonction de déplacement d'un élément singulier est prise à partir de la solution d'une fissure en cours de propagation. Le facteur d'intensité des contraintes dynamiques correspondant à des fissures de mode III ou des déformations de mode I dans une plaque finie a été déterminé. Les résultats des calculs correspondant à des fissures stationnaires ou des fissures en cours de propagation sous des charges dynamiques sont comparées aux solutions analytiques obtenues par d'autres auteurs. On montre que la méthode présentée décrit de façon satisfaisante la variation en fonction du temps du facteur d'intensité des contraintes dans les problèmes de fissuration dynamique. 相似文献
18.
The main objective of this study is to devise a technique, which, when implemented into finite-element codes, is efficiently applicable to impact collapse analyses of framed structures. In this study, the formerly developed adaptively shifted integration (ASI) technique for the linear Timoshenko beam element is modified into the ASI-Gauss technique by placing the numerical integration points of the two consecutive elements forming an elastically deformed member in such a way that stresses and strains are evaluated at the Gaussian integration points of the two-element member. On comparison with the ASI technique, the ASI-Gauss technique proves its higher accuracy and efficiency in elastic range. Moreover, instead of applying impact loads in the form of nodal forces, we consider the impact phenomenon by means of contacts between the elements involved and the elemental contact algorithm is verified from the point of conservation of energy. Impact analyses considering member fracture with different sets of parameters are performed using a high-rise framed structure and a small aircraft. From the results obtained, we can observe propagation phenomena of impact loads and shock waves. Also, a proper difference in impact damage is obtained by different sets of parameters. The results also indicate that the mass of the aircraft has a stronger influence on impact damage than its velocity. Moreover, soon after impact, tensile stresses are observed in the columns that were compressed by dead loads before impact. 相似文献
19.
In this paper, the punching resistance of a reinforced concrete (RC) wall under missile impact loading is evaluated using the finite element approach. The model is analyzed using LS-DYNA, a commercially available software program. The structural components of the RC wall, missile, and their contacts are fully modeled. Included in the analysis is material nonlinearity, which considers damage and failure. Damping effect is also taken into account. The analysis results are then verified with the test results. Parametric studies with a varying number of layers of longitudinal rebar and shear bar spacing are carried out to investigate the punching behavior of RC walls under missile impact. The distance travelled, scabbing area, and failure mode of various RC walls are examined, and efficient designs are recommended thereafter. 相似文献
20.
The performance of group implicit algorithms is assessed on actual concurrent computers. We show that, as the number of subdomains is increased, performance enhancements are derived from two sources: the increased parallelism in the computations; and a reduction in equation solving effort. Moreover, we show that these two performance enhancements are synergistic, in the sense that the corresponding speed-ups are multiplied, rather than merely added. Our numerical simulations demonstrate that, if n is the number of degrees of freedom of the structure, p the number of processors used in the computations, and s ? p is the number of subdomains in the partition, the net speed-up is $ O\left({p\sqrt s} \right) $ in 2D and O( ps) in 3D, asymptotically as n/ s → ∞. In particular, speed-ups with respect to Newmark's method of $ O\left({p\sqrt s} \right) $ in 2D and O( s) in 3D are obtained on a single-processor machine. Finally, simulations on a 32-node hypercube are presented for which the interprocessor communication efficiencies obtained are consistently in excess of 90 per cent. 相似文献
|