首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MerTK (Mer Tyrosine Kinase) is a cell surface receptor that regulates phagocytosis of photoreceptor outer segments (POS) in retinal pigment epithelial (RPE) cells. POS phagocytosis is impaired in several pathologies, including diabetes. In this study, we investigate whether hyperglycemic conditions may affect MerTK expression and activation in ARPE-19 cells, a retinal pigment epithelial cellular model. ARPE-19 cells were cultured in standard (CTR) or high-glucose (HG) medium for 24 h. Then, we analyzed: mRNA levels and protein expression of MerTK and ADAM9, a protease that cleaves the extracellular region of MerTK; the amount of cleaved Mer (sMer); and the ability of GAS6, a MerTK ligand, to induce MerTK phosphorylation. Since HG reduces miR-126 levels, and ADAM9 is a target of miR-126, ARPE-19 cells were transfected with miR-126 inhibitor or mimic; then, we evaluated ADAM9 expression, sMer, and POS phagocytosis. We found that HG reduced expression and activation of MerTK. Contextually, HG increased expression of ADAM9 and the amount of sMer. Overexpression of miR-126 reduced levels of sMer and improved phagocytosis in ARPE-19 cells cultured with HG. In this study, we demonstrate that HG compromises MerTK expression and activation in ARPE-19 cells. Our results suggest that HG up-regulates ADAM9 expression, leading to increased shedding of MerTK. The consequent rise in sMer coupled to reduced expression of MerTK impairs binding and internalization of POS in ARPE-19 cells.  相似文献   

4.
Despite the established efficacy of statin therapy, the risk of cardiovascular events remains high in many patients. We examined high-density lipoprotein (HDL) subclass distribution profiles among statin-treated coronary heart disease (CHD) patients undergoing percutaneous coronary intervention (PCI). Plasma HDL subclasses were measured in 85 patients with established CHD and quantified by two-dimensional gel electrophoresis and immunoblotting. In CHD patients with statin treatment, the mean value of total cholesterol (TC) reached the desirable level and the triacylglycerol level (TAG) was borderline high. Moreover, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), apolipoproteinA-I, and apolipoproteinB-100 levels in these patients resembled those in normolipidemic healthy subjects. The HDL subclass did not show a normal distribution and was characterized by the lower large-sized HDL2b contents and higher contents of small-sized preβ1-HDL in CHD patients, compared to those in normolipidemic control subjects. Multiple stepwise regression analysis revealed that the severity of coronary stenosis, determined by the Gensini Score, was significantly and independently predicted by HDL2b and HDL3b. Statin therapy was effective in modifying plasma lipids levels, but not adequate as a monotherapy to normalize the HDL subclass distribution phenotype of patients with CHD undergoing PCI. The HDL subclass distribution may aid in risk stratification, especially in patients with CHD and therapeutic LDL-C and HDL-C levels.  相似文献   

5.
Oxidized low density lipoprotein (ox-LDL) and its receptor, lectin-Like ox-LDL receptor-1 (LOX-1), play important roles in the development of endothelial injuries. Olmesartan can protect endothelial cells from the impairment caused by various pathological stimulations. In the present study we investigated whether olmesartan decreased the impairment of endothelial cells induced by ox-LDL by exerting its effects on LOX-1 both in vitro and in vivo. Incubation of cultured endothelial cells of neonatal rats with ox-LDL for 24 h or infusion of ox-LDL in mice for 3 weeks led to the remarkable impairment of endothelial cells, including increased lactate dehydrogenase synthesis, phosphorylation of p38 mitogen-activated protein kinases (p38 MAPK) and expression of apoptotic genes such as B-cell leukemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3. Simultaneously, the cell vitality and expression of Bcl-2 gene were greatly reduced. All these effects, however, were significantly suppressed by the treatment with olmesartan. Furthermore, ox-LDL promoted up-regulation of LOX-1 expression either in cultured endothelial cells or in the aortas of mice, which was reversed with the administration of olmesartan. Our data indicated that olmesartan may attenuate the impairment of endothelial cell via down-regulation of the increased LOX-1 expression induced by ox-LDL.  相似文献   

6.
The human long pentraxin PTX3 has complex regulatory roles at the crossroad of innate immunity, inflammation, and tissue repair. PTX3 can be produced by various cell types, including vascular endothelial cells (ECs), in response to pro-inflammatory cytokines or bacterial molecules. PTX3 has also been involved in the regulation of cardiovascular biology, even if ambiguous results have been so far provided in both preclinical and clinical research. In this study, we compared the proteomic profiles of human ECs (human umbilical vein ECs, HUVECs), focusing on differentially expressed proteins between the control and PTX3-silenced ECs. We identified 19 proteins that were more abundant in the proteome of control ECs and 23 proteins that were more expressed in PTX3-silenced cells. Among the latter, proteins with multifunctional roles in angiogenesis, oxidative stress, and inflammation were found, and were further validated by assessing their mRNAs with RT-qPCR. Nevertheless, the knock down of PTX3 did not affect in vitro angiogenesis. On the contrary, the lack of the protein induced an increase in pro-inflammatory markers and a shift to the more oxidative profile of PTX3-deficient ECs. Altogether, our results support the idea of a protective function for PTX3 in the control of endothelial homeostasis, and more generally, in cardiovascular biology.  相似文献   

7.
Atherosclerosis is characterized by endothelial dysfunction, lipid deposition, fibro‐proliferative reactions and inflammation. Octacosanol is a high‐molecular‐weight primary aliphatic alcohol. As the main component of a cholesterol‐lowering drug, octacosanol could inhibit lipids accumulation and cholesterol metabolism. To explore the indication of octacosanol on endothelial protection, we evaluated its effects on the proliferation and migration of human umbilical vein endothelial cells (HUVEC). Cell viability assay using methyl thiazolyl tetrazolium and 5‐ethynyl‐2′‐deoxyuridine revealed that 3.125 μg/ml octacosanol promoted the proliferation of HUVEC. A cell migration assay indicated that 0.781 and 3.125 μg/ml octacosanol increased the migration of HUVEC. Moreover, the phosphorylation levels of Akt and Erk1/2 were significantly elevated under exposure to octacosanol. Blocking the activation of Akt and Erk with their potent inhibitors LY294002 and PD98059, respectively, markedly attenuated the octacosanol‐induced proliferation and migration of HUVEC. These findings demonstrated for the first time that octacosanol enhanced the proliferation and migration of HUVEC and mediated these effects through activation of the PI3K/Akt and MAPK/Erk1/2 signaling pathways.  相似文献   

8.
As opposed to adults, high-density lipoprotein (HDL) is the main cholesterol carrying lipoprotein in fetal circulation. The major HDL receptor, scavenger receptor class B type I (SR-BI), contributes to local cholesterol homeostasis. Arterial endothelial cells (ECA) from human placenta are enriched with cholesterol compared to venous endothelial cells (ECV). Moreover, umbilical venous and arterial plasma cholesterol levels differ markedly. We tested the hypothesis that the uptake of HDL-cholesteryl esters differs between ECA and ECV because of the differential expression of SR-BI. We aimed to identify the key regulators underlying these differences and the functional consequences. Immunohistochemistry was used for visualization of SR-BI in situ. ECA and ECV were isolated from the chorionic plate of human placenta and used for RT-qPCR, Western Blot, and HDL uptake assays with 3H- and 125I-labeled HDL. DNA was extracted for the methylation profiling of the SR-BI promoter. SR-BI regulation was studied by exposing ECA and ECV to differential oxygen concentrations or shear stress. Our results show elevated SR-BI expression and protein abundance in ECA compared to ECV in situ and in vitro. Immunohistochemistry demonstrated that SR-BI is mainly expressed on the apical side of placental endothelial cells in situ, allowing interaction with mature HDL circulating in the fetal blood. This was functionally linked to a higher increase of selective cholesterol ester uptake from fetal HDL in ECA than in ECV, and resulted in increased cholesterol availability in ECA. SR-BI expression on ECV tended to decrease with shear stress, which, together with heterogeneous immunostaining, suggests that SR-BI expression is locally regulated in the placental vasculature. In addition, hypomethylation of several CpG sites within the SR-BI promoter region might contribute to differential expression of SR-BI between chorionic arteries and veins. Therefore, SR-BI contributes to a local cholesterol homeostasis in ECA and ECV of the human feto-placental vasculature.  相似文献   

9.
The C-type natriuretic peptide receptor (NPRC) is expressed in many cell types and binds all natriuretic peptides with high affinity. Ligand binding results in the activation or inhibition of various intracellular signaling pathways. Although NPRC ligand binding has been shown to regulate various ion channels, the regulation of endothelial sodium channel (EnNaC) activity by NPRC activation has not been studied. The objective of this study was to investigate mechanisms of EnNaC regulation associated with NPRC activation in human aortic endothelial cells (hAoEC). EnNaC protein expression and activity was attenuated after treating hAoEC with the NPRC agonist cANF compared to vehicle, as demonstrated by Western blotting and patch clamping studies, respectively. NPRC knockdown studies using siRNA’s corroborated the specificity of EnNaC regulation by NPRC activation mediated by ligand binding. The concentration of multiple diacylglycerols (DAG) and the activity of protein kinase C (PKC) was augmented after treating hAoEC with cANF compared to vehicle, suggesting EnNaC activity is down-regulated upon NPRC ligand binding in a DAG-PKC dependent manner. The reciprocal cross-talk between NPRC activation and EnNaC inhibition represents a feedback mechanism that presumably is involved in the regulation of endothelial function and aortic stiffness.  相似文献   

10.
11.
The 0‐3 type CaBi4Ti4O15:30 wt%BiFeO3 composite shows much better high‐temperature piezoelectric properties than the single‐phase CaBi4Ti4O15 or BiFeO3 ceramics. The composite with 0‐3 type connectivity exhibits a high density of 7.01 g/cm3, a saturated polarization of 21.5 μC/cm2 and an enhanced piezoelectric d33 of 25 pC/N. After the poled composite was annealed at 600°C, its d33 is 21 pC/N at room temperature. Resistance of the composite decreases slowly from 109 ohm at 20°C to ~105 ohm at 500°C. Furthermore, the poled composite shows strong radial and thickness dielectric resonances at 20°C‐500°C.  相似文献   

12.
Homocysteine (Hcy) is an independent risk factor for a variety of cardiovascular diseases, such as coronary heart disease, hypertension, stroke, etc. There is a close relationship between the vascular endothelial cell apoptosis and these diseases. Recent studies have shown homocysteine can induce apoptosis in endothelial cells, which may be an important mechanism for the development of theses cardiovascular diseases. Although there are several reports about how the Hcy induces apoptosis in endothelial cells, the exact mechanism is not fully understood. MicroRNAs are small, non-coding RNA. Previous studies have shown that there is a close relationship between several microRNAs and cell apoptosis. However, there are no studies about the role of microRNAs in Hcy-induced apoptosis in endothelial cells so far. In this study, we constructed the model of homocysteine-induced apoptosis in human coronary artery endothelial cells (HCAECs) and found miR-30b was significantly down-regulated by 1 mmol/L Hcy. In addition, overexpression of miR-30b can improve the Hcy-induced apoptosis in HCAECs by downregulating caspase-3 expression. Therefore, miR-30b may play an important role in Hcy-induced apoptosis in endothelial cells.  相似文献   

13.
Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.  相似文献   

14.
目的观察KDRn3蛋白在人脐静脉血管内皮细胞中的表达及对其增殖的抑制作用。方法将质粒pEGFP-N1/KDRn3扩增并鉴定后,以脂质体介导转染人脐静脉血管内皮细胞,培养一定时间后,在荧光显微镜下观察绿色荧光蛋白的表达,ELISA检测细胞培养上清中KDRn3的含量,MTT法检测KDRn3蛋白对人脐静脉血管内皮细胞增殖的影响。结果转染后48h,在荧光显微镜下可见pEGFP-N1/KDRn3转染组人脐静脉血管内皮细胞发出绿色荧光,72h发出绿色荧光的细胞增多,强度增强;转染后24、48和72h,细胞培养上清中KDRn3含量与转染前比较均提高,且差异有显著意义;转染后48和72h,pEGFP-N1/KDRn3转染组与对照组比较,细胞增殖有明显的抑制,且差异有显著意义。结论KDRn3蛋白可在人脐静脉血管内皮细胞中表达,并能抑制其增殖。  相似文献   

15.
16.
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EV) are widely considered as a cell-free therapeutic alternative to MSC cell administration, due to their immunomodulatory and regenerative properties. However, the interaction mechanisms between EV and target cells are not fully understood. The surface glycans could be key players in EV–cell communication, being specific molecular recognition patterns that are still little explored. In this study, we focused on the role of N-glycosylation of MSC-EV as mediators of MSC-EV and endothelial cells’ interaction for subsequent EV uptake and the induction of cell migration and angiogenesis. For that, EV from immortalized Wharton’s Jelly MSC (iWJ-MSC-EV) were isolated by size exclusion chromatography (SEC) and treated with the glycosidase PNGase-F in order to remove wild-type N-glycans. Then, CFSE-labelled iWJ-MSC-EV were tested in the context of in vitro capture, agarose-spot migration and matrigel-based tube formation assays, using HUVEC. As a result, we found that the N-glycosylation in iWJ-MSC-EV is critical for interaction with HUVEC cells. iWJ-MSC-EV were captured by HUVEC, stimulating their tube-like formation ability and promoting their recruitment. Conversely, the removal of N-glycans through PNGase-F treatment reduced all of these functional activities induced by native iWJ-MSC-EV. Finally, comparative lectin arrays of iWJ-MSC-EV and PNGase-F-treated iWJ-MSC-EV found marked differences in the surface glycosylation pattern, particularly in N-acetylglucosamine, mannose, and fucose-binding lectins. Taken together, our results highlight the importance of N-glycans in MSC-EV to permit EV–cell interactions and associated functions.  相似文献   

17.
Amentoflavone is one of the important bioactive flavonoids in the ethylacetate extract of “Cebaiye”, which is a blood cooling and hematostatic herb in traditional Chinese medicine. The previous work in our group has demonstrated that the ethylacetate extract of Cebaiye has a notable antagonistic effect on the injury induced by lipopolysaccharide (LPS) to human umbilical vein endothelial cells (HUVECs). The present investigation was designed to assess the effects and possible mechanism of cytoprotection of amentoflavone via metabolomics. Ultra-performance liquid chromatography/quadrupole time of flight-mass spectrometry (UPLC/QTOF-MS) coupled with multivariate data analysis was used to characterize the variations in the metabolites of HUVECs in response to exposure to LPS and amentoflavone treatment. Seven putative metabolites (glycine, argininosuccinic acid, putrescine, ornithine, spermidine, 5-oxoproline and dihydrouracil) were discovered in cells incubated with LPS and/or amentoflavone. Functional pathway analysis uncovered that the changes of these metabolites related to various significant metabolic pathways (glutathione metabolism, arginine and proline metabolism, β-alanine metabolism and glycine, serine and threonine metabolism), which may explain the potential cytoprotection function of amentoflavone. These findings also demonstrate that cellular metabolomics through UPLC/QTOF-MS is a powerful tool for detecting variations in a range of intracellular compounds upon toxin and/or drug exposure.  相似文献   

18.
The aim of this study was to investigate the C-terminal cleavage of (pyr)-apelin-13 in human endothelial cells with respect to the role and subcellular location of prolyl carboxypeptidase (PRCP). Human umbilical vein and aortic endothelial cells, pre-treated with prolyl carboxypeptidase-inhibitor compound 8o and/or angiotensin converting enzyme 2 (ACE2)-inhibitor DX600, were incubated with (pyr)-apelin-13 for different time periods. Cleavage products of (pyr)-apelin-13 in the supernatant were identified by mass spectrometry. The subcellular location of PRCP was examined via immunocytochemistry. In addition, PRCP activity was measured in supernatants and cell lysates of LPS-, TNFα-, and IL-1β-stimulated cells. PRCP cleaved (pyr)-apelin-13 in human umbilical vein and aortic endothelial cells, while ACE2 only contributed to this cleavage in aortic endothelial cells. PRCP was found in endothelial cell lysosomes. Pro-inflammatory stimulation induced the secretion of PRCP in the extracellular environment of endothelial cells, while its intracellular level remained intact. In conclusion, PRCP, observed in endothelial lysosomes, is responsible for the C-terminal cleavage of (pyr)-apelin-13 in human umbilical vein endothelial cells, while in aortic endothelial cells ACE2 also contributes to this cleavage. These results pave the way to further elucidate the relevance of the C-terminal Phe of (pyr)-apelin-13.  相似文献   

19.
20.
Trans fatty acids (TFA) are reported to contribute to inflammation and coronary heart disease. The study aim was to investigate the proapoptotic effects of two double bond TFA (TDTFA) on human umbilical vein endothelial cells (HUVEC). The HUVEC were grown in media supplied with linoelaidic acid (9t,12t-C18:2) at 50, 100, 200, 400 μmol/l for 24 or 48 h to examine the effects of TDTFA on the viability and apoptosis of these cells. Flow cytometry analysis and confocal scanning were used to measure apoptosis, cell binding of Annexin V and propidium iodide uptake. Colorimetric assay and RT-PCR were used to analyze enzyme activities and mRNA expression of caspase-3, -8 and -9 in HUVEC. Results showed that 9t,12t-C18:2 inhibited the viability of HUVEC in a dose-dependent and time-dependent manner. The percentages of 9t,12t-C18:2 induced apoptotic and necrotic cells significantly increased compared with that of the control. The activities and mRNA expression of caspase-8, -9 and -3 were significantly increased in 9t,12t-C18:2 treated cells compared to that of the control. Addition of specific inhibitors of caspase-8 (z-IETD-fmk) and caspase-9 (z-LEHD-fmk) to HUVEC was found to completely inhibit 9t,12t-C18:2-induced activation of caspase-3, and z-IETD-fmk inhibited the activation of caspase-9. Meanwhile, it was found that mRNA expression of Bid, Smac/DIABLO and the release of mitochondrial cytochrome c were significantly elevated by 9t,12t-C18:2 treatment. These results suggest that 9t,12t-C18:2 may induce apoptosis of HUVEC through activating caspase-8, -9 and -3. Both the death receptor pathway and the mitochondrial pathway may be involved in the apoptosis induced by 9t,12t-C18:2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号