首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Fe2+溶液为原料、NaBH4为还原剂,采用传统液相还原技术合成了颗粒活性炭(GAC)载纳米零价铁(nZVI)复合材料GAC-nZVI,用扫描电镜对GAC-nZVI进行表征,通过间歇实验考察了其对去除Cr(VI)的影响。结果表明,GAC能阻止nZVI颗粒聚集,合成的GAC-nZVI能有效去除水中的Cr(VI)。在Cr(VI)初始浓度50 mg/L、温度40℃和pH=2.0、投加GAC-nZVI 3.0 g/L的条件下反应5 min,Cr(VI)去除率为99.4%。pH=2.0?4.0时,处理后水中总铬浓度均低于1 mg/L,表明残留少量Cr(III)。随pH值和Cr(VI)浓度增加,Cr(VI)去除率降低;随反应温度和GAC-nZVI投加量增加,Cr(VI)去除率增加。准一级动力学模型可用于描述Cr(VI)的去除过程。相同条件下,GAC-nZVI去除Cr(VI)的反应速率常数达0.19797 min?1,为原颗粒活性炭反应速率常数0.0023 min?1的86倍。随pH值降低或反应温度和GAC-nZVI投加量增加,反应速率常数增加。  相似文献   

2.
Iron oxide nanoparticle has been successfully modified by polyacrylamide and the polyacrylamide modified magnetic nanoparticles (PMMNs) were applied to remove Cr(VI) in wastewater. The vibrating sample magnetometer (VSM) spectra indicated the large saturation magnetization and superparamagnetic property of the PMMNs. This made the polyacrylamide modified iron oxide easily separate with liquid phase. Scanning electron microscope (SEM) results showed that both the synthesized iron oxide and the PMMNs were nanoscale. Batch adsorption studies had been carried out to determine the effect of pH, contact time, Cr(VI) initial concentration, and coexisting salts on the adsorption of Cr(VI). Maximum removal (98.30%) was observed from an initial concentration of 100 mg L?1 Cr(VI) at pH 3.0, 30°C. This process followed pseudo‐second‐order kinetics model and the equilibrium time was 40 min. The experimental data fitted the Langmuir isotherm better than Freundlich. Maximum adsorption amount of Cr(VI) by PMMN was 35.186 mg g?1. The effect of coexisting salts on Cr(VI) removal was not apparent even the concentration of salt was 10 times as big as the low concentration, 0.01M. It had been proposed that the mechanism of Cr(VI) uptake onto PMMN was adsorption‐coupled reduction. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40945.  相似文献   

3.
《分离科学与技术》2012,47(2):290-299
A novel adsorbent: Fe2+-modified vermiculite was prepared in a two-step reaction. Adsorption experiments were carried out as a function of pH, contact time, and concentration of Cr(VI). It was found that Fe2+-modified vermiculite was particularly effective for the removal of Cr(VI) at pH 1.0. The adsorption of Cr(VI) reached equilibrium within 60 min, and the pseudo-second-order kinetic model best described the adsorption kinetics. The adsorption data follow the Langmuir model more than the Freundlich model. At pH 1.0, the maximum Cr(VI) sorption capacity (Q max ) was 87.72 mg · g?1. Desorption of Cr(VI) from Fe2+-modified vermiculite using NaOH treatment exhibited a higher desorption efficiency by more than 80%. The sorption mechanisms including electrostatic interaction and reduction were involved in the Cr (VI) removal. The results showed that Fe2+-modified vermiculite can be used as a new adsorbent for Cr(VI) removal which has a higher adsorption capacity and a faster adsorption rate.  相似文献   

4.
ABSTRACT

The nanosized Fe3O4 catalyst was synthesized via a modified reverse coprecipitation method and characterized by means of a scanning electron microscope (SEM) and an X-ray diffraction (XRD) analysis instrument. The degradation efficiency and reaction rate of Fe3O4 in activating sodium persulfate used to degrade ciprofloxacin were determined from the catalyst dosage, oxidant concentration, and initial pH. The results showed that under the optimum conditions of a catalyst dosage of 2.0 g·L?1, a sodium persulfate concentration of 1.0 g·L?1, and an initial pH of 7, the degradation rate of ciprofloxacin was 93.73%, the removal rate of total organic carbon was 78%, and the first-order reaction constant was 0.06907 min?1 within 40 min. It was also demonstrated that the reactive oxygen species in the Fe3O4/sodium persulfate catalytic system were mainly composed of SO4 and supplemented by OH· and HO2· using probe compounds such as ethanol, tertiary butanol, and benzoquinone.  相似文献   

5.
In this study, wastewater contaminated by colour and total organic carbon from the diazo dye CI Acid Black 24 was successfully removed by reductive decolourization with zero‐valent iron powder. The effects on decolourization of experimental variables such as iron dosage, initial dye concentration, pH and dissolved oxygen level were evaluated. The best removal efficiencies for decolourization of 99.7% and total organic carbon of 57.4% were obtained with an initial dye concentration of 25.0 mg L?1 and iron dosage of 200.0 g L?1. Moreover, the decolourization rates followed pseudo‐first‐order kinetic equations with respect to dye concentration. The colour removal efficiency was simultaneously dependent on iron dosage and various initial dye concentrations, although the colour and total organic carbon removal efficiencies linearly increased with increased iron dosage, reaching a maximum at 100.0 g L?1. A contour plot was developed to illustrate the 3D relation of removal efficiencies with initial dye concentration and iron dosage. For wastewater with a concentration range from 25 to 100 mg L?1 CI Acid Black 24 the suggested ideal operation conditions are 100.0 g L?1 iron dosage, pH 2‐4, normal oxygen concentration of 5‐7 mg L?1 and reaction time of 30‐60 min. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles   总被引:1,自引:0,他引:1  
Due to rapid industrialisation, the presence of heavy metals in water and wastewater is a matter of environmental concern. Though some of the metals are essential for our system but if present beyond their threshold limit value (TLV), they are harmful and their treatment prior to disposal becomes inevitable. The present communication has been addressed to the removal of Cr(VI) from aqueous solutions by nanoparticles of iron. Nanoparticles of iron were prepared by sol–gel method. The characterisation of the nanoparticles was carried out by XRD and TEM analysis. Batch experiments were adopted for the adsorption of Cr(VI) from its solutions. The effect of different important parameters such as contact time and initial concentration, pH, adsorbent dose, and temperature on removal of chromium was studied. The removal of chromium increased from 88. 5% to 99.05% by decreasing its initial concentration from 15 to 5 mg L?1 at optimum conditions. Removal of Cr(VI) was found to be highly pH dependent and a maximum removal (100%) was obtained at pH 2.0. The process of removal was governed by first and pseudo‐second‐order kinetic equations and their rate constants were determined. The process of removal was also governed by intraparticle diffusion. Values of the thermodynamic parameters viz. ΔG°, ΔH°, and ΔS° at different temperatures were determined. The data generated in this study can be used to design treatment plants for chromium rich industrial effluents. Adsorption results indicate that nanoiron particles can be effective for the removal of chromium from aqueous solutions.  相似文献   

7.
《分离科学与技术》2012,47(11-12):3200-3220
Abstract

Grainless stalk of corn (GLSC) was tested for removal of Cr(VI) and Cr(III) from aqueous solution at different pH, contact time, temperature, and chromium/adsorbent ratio. The results show that the optimum pH for removal of Cr(VI) is 0.84, while the optimum pH for removal of Cr(III) is 4.6. The adsorption processes of both Cr(VI) and Cr(III) onto GLSC were found to follow first-order kinetics. Values of k ads of 0.037 and 0.018 min?1 were obtained for Cr(VI) and Cr(III), respectively. The adsorption capacity of GLSC was calculated from the Langmuir isotherm as 7.1 mg g?1 at pH 0.84 for Cr(VI), and as 7.3 mg g?1 at pH 4.6 for Cr(III), at 20°C. At the optimum pH for Cr(VI) removal, Cr(VI) reduces to Cr(III). EPR spectroscopy shows the presence of Cr(V) + Cr(III)-bound-GLSC at short contact times and adsorbed Cr(III) as the final oxidation state of Cr(VI)-treated GLSC. The results indicate that, at pH ≈ 1, GLSC can completely remove Cr(VI) from aqueous solution through an adsorption-coupled reduction mechanism to yield adsorbed Cr(III) and the less toxic aqueous Cr(III), which can be further removed at pH 4.6.  相似文献   

8.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

9.
This study investigated the adsorption of PO43? onto encapsulated nanoscale zero-valent iron (nZVI). At initial PO43–: 10 mg · L?1, the optimum condition was initial pH: 6.5, nZVI dosage: 20 g · L?1, stirring-rate: 100 rpm, and time: 30 min, achieving PO43? removal of 42%. The effect of pH and time on the PO43? removal efficiency was quadratic-linear concave up, whereas the curve of nZVI dosage was quadratic-convex. Artificial neural network with a structure of 5?7?1 adequately predicted PO43? removal (R2: 97.6%), and the sensitivity analysis demonstrated that pH was the most influential input. The cost of the adsorption unit was 3.15 $USD · m?3.  相似文献   

10.
The reuse of paper solid waste (PSW) as a low-cost sorbent for Cd removal from aqueous phase was investigated. Batch experiments were conducted to study the effects of pH (3.5, 5.5, 7.5), contact time (10–360 min), PSW dose (2.5–20 g L?1), and Cd concentration (5–50 mg L?1) at an ionic strength of 0.01 M NaNO3 on adsorption efficiency and capacity. Cd removal of ~96% occurred in 20 mg L?1 Cd solution at pH 5.5 containing 20 g L?1 PSW. Equilibrium was attained after 120 min and the equilibrium adsorption capacity of PSW increased with increasing Cd concentration from 5 to 50 mg L?1. The kinetic process of Cd adsorption obeyed the pseudo-second-order kinetic model. Langmuir and Freundlich models described equally well the experimental data and the maximum adsorption capacity was 4.89 mg g?1. PSW can be used for reducing Cd concentration in Cd-contaminated water systems.  相似文献   

11.
A new porous carbon with high surface area of 1,313.41 m2 g?1 with pore volume 1.359 cm3 g?1 has been synthesized from matured tea leaves by chemical activation method using phosphoric acid. The carbon was found to be highly efficient for removal of Cr(VI) from aqueous solution. The effects of various parameters such as contact time, initial metal ion concentration, pH, temperature and amount of adsorbent on the extent of adsorption were studied. Langmuir, Freundlich and Temkin adsorption models were used to interpret the experimental data. The adsorption data were best fitted with Langmuir isotherm model. The adsorption capacity of Cr(VI) onto the activated carbon calculated from Langmuir isotherm was found to be 30.8 mg g?1 at pH 4.8 and temperature 303 K. The adsorption capacity increases from 25.36 to 32.04 mg g?1 with an increase in temperature from 303 to 323 K at initial Cr(VI) concentration of 60 mg L?1. The adsorption process followed a pseudo second order kinetic model. Thermodynamic parameters ΔH0 (28.6 KJ mol?1), ΔG0 at three different temperatures [(?0.145, ?1.09, ?2.04) KJ mol?1] and ΔS0 (94.87 J mol?1 K?1) were calculated. These values confirm the adsorption process to be endothermic and spontaneous in nature.  相似文献   

12.
The adsorption capabilities of multiwalled carbon nanotubes (MWCNTs) with and without the embedded carboxyl group for the removal of parts per million levels of hexavalent chromium were examined as a function of several parameters, namely contact time, pH of initial solution, initial concentration of Cr(VI), adsorbent dosage as well as temperature of solution. Adsorption isotherms have been utilized to explain the adsorption mechanism. Ion exchange, intra‐particle diffusion, and electrostatic interactions are found to be the fundamental mechanisms describing the adsorption of Cr(VI). The maximum adsorption capacities of Cr(VI) ion by raw MWCNTs and functionalized MWCNTs were found to be 84.75 and 78.13 mg · g?1, respectively, as calculated by the Langmuir adsorption isotherm model. This is with regard to the electron‐rich atoms inside the functional group which repels the negatively charged dichromate ions. Kinetic studies were performed, and the data was found in good agreement with the pseudo‐second‐order.  相似文献   

13.
BACKGROUND: Phenol and hexavalent chromium are considered industrial pollutants that pose severe threats to human health and the environment. The two pollutants can be found together in aquatic environments originating from mixed discharges of many industrial processes, or from a single industry discharge. The main objective of this work was to study the feasibility of using phenol as an electron donor for Cr(VI) reduction, thus achieving the simultaneous biological removal/reduction of the two pollutants in a packed‐bed reactor. RESULTS: A pilot‐scale packed‐bed reactor was used to estimate phenol removal with simultaneous Cr(VI) reduction through biological mechanisms, using a new mixed bacterial culture originated from Cr(VI)‐reducing and phenol‐degrading bacteria, operated in draw–fill mode with recirculation. Experiments were performed for feed Cr(VI) concentration of about 5.5 mg L?1, while phenol concentration ranged from 350 to 1500 mg L?1. The maximum reduction/removal rates achieved were 0.062 g Cr(VI) L?1 d?1 and 3.574 g phenol L?1 d?1, for a phenol concentration of 500 mg L?1. CONCLUSION: Phenol removal with simultaneous biological Cr(VI) reduction is feasible in a packed‐bed attached growth bioreactor. Phenol was found to inhibit Cr(VI) reduction, while phenol removal was rather unaffected by Cr(VI) concentration increase. However, the recorded removal rates of phenol and Cr(VI) were found to be much lower than those obtained from previous research, where the two pollutants were examined separately. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Sorption of hexavalent chromium ions from aqueous solution by poly 4‐vinyl pyridine [Poly(4‐VP)] was studied. The batch method was applied for adsorption processes. The effects of initial ion concentration, time, pH and temperature on adsorption were investigated. A treatment time of 60 min was found to be sufficient to reach equilibrium. pH 3.0 was found as the optimum pH value for the process. The maximum adsorption performance was achieved at 86.7 mg g?1 using 500 mg L?1 Cr (VI) solutions. The process of adsorption of Cr (VI) was explained by Langmuir isotherm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2865–2870, 2006  相似文献   

15.
《分离科学与技术》2012,47(3):444-455
ABSTRACT

The study aims to use waste plastic PET bottles to recover terephthalic acid for preparing copper-1,4-benzenedicarboxylate, which was then utilized as an adsorbent for removal of methylene blue (MB) from aqueous solutions after carefully characterizing by XRD, FTIR, TGA, SEM, and EDX. The optimum conditions were established as pH = 6, 25°C, adsorbent dose of 1 g L?1, contact time of 20 min, and agitation speed of 150 rpm. The adsorption process was spontaneous, exothermic, fitting well to Langmuir isotherm model with the maximum adsorption capacity of 41.01 mg g?1 and more suitable to be described by the pseudo first-order kinetic model. It was indicated that the physical adsorption plays a leading role in the adsorption process. The recycling study was also conducted to confirm the long-term use of the synthesized adsorbent.  相似文献   

16.
The aim of this study was to statistically evaluate the capability of a prepared TiO2/gum tragacanth hydrogel as a photocatalyst for the removal of methylene blue dye molecules from contaminated solutions. In this regard, TiO2 nanoparticles were sonicated in gum tragacanth and the final hydrogel was prepared by the addition of glutaraldehyde as a crosslinking agent. Response surface methodology was employed as a mathematical and statistical tool to describe the system by a polynomial equation that relates the removal efficiency to selected variables (time, pH, initial dye concentration and photocatalyst dosage). The significance and adequacy of the model were confirmed by high coefficient of determination (R2) and adjusted R2 values (>93%). The system was optimized at an initial dye concentration of 9.37 mg L?1, pH of 9.02, time of 124.34 min and photocatalyst dosage of 0.13 g L?1 using the response optimizer with an efficiency of 88.86%. A kinetic study of photocatalytic decoloration indicated that the pseudo‐second‐order model was well fitted to the experimental data. © 2018 Society of Chemical Industry  相似文献   

17.
In the present study, the reaction kinetics of corn gluten hydrolysis by Alcalase, a bacterial protease produced by Bacillus licheniformis, was investigated. The reactions were carried out for 10 min in 0.1 L of aqueous solutions containing 10, 20, 30, 40, and 50 g protein L?1 corn gluten at various temperature and pH values. The amount of enzyme added to the reaction solution was 0.25% (v/v). Also, to determine decay and product inhibition effects for Alcalase, a series of inhibition experiments were conducted with the addition of various amounts of hydrolysate. For each experimental run, both the amount of hydrolysis (meqv L?1) and the soluble protein amount (g L?1) were investigated with respect to time, and the initial reaction rates were determined from the slopes of the linear models that fitted to these experimental data. The kinetic parameters, Km and Vmax were estimated as 53.77 g L?1 and 5.94 meqv L?1min?1. The type of inhibition for Alcalase was determined as uncompetitive, and the inhibition constant, Ki, was estimated as 44.68% (hydrolysate/substrate mixture).  相似文献   

18.
The efficacy of feldspar in the removal of Cr(VI) from representative waste-water from a plating industry has been investigated in a completely mixed batch reactor at different concentrations, rate of agitation and particle size. The data obey the Langmuir isotherm for the present system and the process of uptake follows first-order kinetics. The maximum removal (91%) was observed at 40°C and pH 2.5 with initial concentration of 19.23 μmol dm?3 Cr(VI) and 40 g dm?3 feldspar. The process involves both film and pore diffusion to different extents. Column studies have also been carried out using a certain concentration of waste-water. More than 92% recovery has been achieved and the column can be used for 10 cycles before regeneration. The present technique seems to be quite attractive.  相似文献   

19.
Chitosan (90% deacetylated) coated magnetic adsorbent prepared by coprecipitation method to remove Cr(VI) from its aqueous solution. The experimental studies depicts that the predominant option for removal of Chromium by adsorption from its aqueous phase using Magnetic‐Chitosan (MC). The subsequent physical, chemical, and magnetic properties of MC were characterized by X‐ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectrometer, vibrating sample magnetometer. The influence of batch process parameters such as contact time, initial concentration, pH, and coexisting anions were investigated. The Box‐Behnken experimental design in response surface methodology was performed to design the experiment optimal operating conditions. The maximum percentage reduction of Cr(VI) is 96.3 that was obtained by magnetic chitosan with the optimal operating conditions of 149.53 mg/L at pH of 5.32 at the contact time of 80 min and at the temperature of 303 K. The average diameter of the magnetic chitosan was calculated from X‐ray diffractometer analysis as 24.5 nm. The equilibrium adsorption isotherm models such as Langmuir and Freundlich and the adsorption kinetics such as pseudo first order, pseudo second order and intra‐particle diffusion kinetic model were analyzed. The experimental data's suited for the best fit with the Langmuir isotherm model and pseudo first order kinetic model. It also revealed that Cr(VI) adsorption on MC is intrinsically exothermic and spontaneous. The magnetic chitosan was also used to investigate for the removal of Cr(VI) from the real water sources such as surface, underground, and tannery wastewater. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45878.  相似文献   

20.
The waste material NCL coal dust was used as adsorbent for removal of Cr(VI) from aqueous solutions under batch adsorption experiments. The maximum removal of 99.97% was recorded at pH 2. The time required to attain equilibrium was found to be 60 min. Adsorption kinetics was described by the Lagergren equation. The value of the rate constant of adsorption was found to be 0.0615 min?1 at 16 mg dm?3 initial concentration and 298 K. The applicability of the Langmuir and Freundlich equations for the present system was also tested at different temperatures: 298, 313, and 328 K. Both thermodynamic parameters and temperature dependence indicated the endothermic nature of Cr(VI) adsorption on coal dust. The results showed that NCL coal dust is a promising adsorbent for the removal of Cr(VI) from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号