首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Diets rich in polyunsaturated fatty acids (PUFA) are well known to suppress hepatic lipogenic enzymes compared to fat-free diets or diets rich in saturated fatty acids. However, the mechanism underlying suppression of lipogenic enzymes is not quite clear. The present study was undertaken to investigate whether lipid peroxidation products are involved in suppression of lipogenic enzymes. Therefore, an experiment with growing male rats assigned to six groups over a period of 40 d was carried out. Rats received semisynthetic diets containing 9.5% coconut oil and 0.5% fresh soybean oil (coconut oil diet, peroxide value 5.1 meq O2/kg oil), 10% fresh soybean oil (fresh soybean oil diet, peroxide value 0.5 meq O2/kg oil), or 10% thermally treated soybean oil (oxidized soybean oil diet, peroxide value 74 meq O2/kg oil). To modify the antioxidant state of the rats, we varied the vitamin E supply (11 and 511 mg α-tocopherol equivalents per kg of diet) according to a bi-factorial design. Food intake and body weight gain were not influenced by dietary fat and vitamin E supply. Activities of hepatic lipogenic enzymes were markedly influenced by the dietary fat. Feeding either fresh or oxidized soybean oil diets markedly reduced activities of fatty acid synthase, (FAS), acetyl CoA-carboxylase, (AcCX), glucose-6-phosphate dehydrogenase, (G6PDH), 6-phosphogluconate dehydrogenase, and ATP citrate lyase (ACL) relative to feeding the coconut oil diet. Moreover, feeding oxidized soybean oil slightly, but significantly, lowered activities of FAS, AcCX, and ACL compared to feeding fresh soybean oil. Activities of hepatic lipogenic enzymes were reflected by concentrations of triglycerides in liver and plasma. Rats fed the coconut oil diet had markedly higher triglyceride concentrations in liver and plasma than rats consuming fresh or oxidized soybean oil diets, and rats fed oxidized soybean oil had lower concentrations than rats fed fresh soybean oil. The vitamin E supply of the rats markedly influenced concentrations of thiobarbituric acid-reactive substances in liver, but it did not influence activities of hepatic lipogenic enzymes. Because the vitamin E supply had no effect, and ingestion of an oxidized oil had only a minor effect, on activities of hepatic lipogenic enzymes, it is strongly suggested that neither exogenous nor endogenous lipid peroxidation products play a significant role in the suppression of hepatic lipogenic enzymes by diets rich in PUFA. Therefore, we assumed that dietary PUFA themselves are involved in regulatio of hepatic lipogenic enzymes. Nevertheless, the study shows that ingestion of oxidized oils, regardless of the vitamin E supply, also affects hepatic lipogenesis, and hence influences triglyceride levels in liver and plasma.  相似文献   

3.
Ando K  Nagata K  Yoshida R  Kikugawa K  Suzuki M 《Lipids》2000,35(4):401-407
The present study was undertaken in order to reexamine the effect of n−3 polyunsaturated fatty acid (PUFA)-rich diet supplementation on lipid peroxidation and vitamin E status of rat organs. Male Wistar rats were fed a diet containing safflower or fish oil at 50 g/kg diet and an equal amount of vitamin E at 59 mg/kg diet (1.18 g/kg oil; and 1.5 g/kg PUFA in safflower oil diet, and 4.3 g/kg PUFA in fish oil diet) for 6 wk. Fatty acid composition of total lipids of brain, liver, heart, and lung of rats fed fish oil was rich in n−3 PUFA, whereas that of each organ of rats fed safflower oil was rich in n−6 PUFA. The vitamin E levels in liver, stomach, and testis of the fish oil diet group were slightly lower than those of the safflower oil diet group, but the levels in brain, heart, lung, kidney, and spleen were not different between the two diet groups. The levels of phospholipid hydroperoxides were determined by the high-performance liquid chromatography-chemiluminescence method and the levels of thiobarbituric acid-reactive substances (TBARS) were determined at pH 3.5 in the presence of butylated hydroxytoluene with or without EDTA. Levels of phospholipid hydroperoxides and TBARS in the brain, liver, heart, lung, kidney, spleen, stomach and testis of the fish oil diet group were similar to those of the safflower oil diet group. The results indicate that high fish oil intake does not induce increased levels of phospholipid hydroperoxides and TBARS in rat organs.  相似文献   

4.
Our objective was to investigate the combination of rosiglitazone (ROSI) and conjugated linoleic acid (CLA) on mammary and hepatic lipogenesis in lactating C57Bl/6 J mice. Twenty-four lactating mice were randomly assigned to one of four treatments applied from postpartum day 6 to day 10. Treatments included: (1) control diet, (2) control plus 1.5 % dietary CLA (CLA) substituted for soybean oil, (3) control plus daily intra-peritoneal (IP) rosiglitazone injections (10 mg/kg body weight) (ROSI), and (4) CLA plus ROSI (CLA-ROSI). Dam food intake and milk fat concentration were depressed with CLA. However, no effects were observed with ROSI. The CLA-induced milk fat depression was due to reduced expression for mammary lipogenic genes involved in de-novo fatty acid (FA) synthesis, FA uptake and desaturation, and triacyglycerol synthesis. Liver weight (g/100 g body weight) was increased by CLA due to an increase in lipid accumulation triggering a compensatory reduction in mRNA abundance of hepatic lipogenic enzymes, including acetyl-CoA carboxylase I and stearoyl-CoA desaturase I. On the contrary, no effects were observed with ROSI on hepatic and mammary lipogenic gene and enzyme expression. Overall, feeding CLA to lactating mice induced milk fat depression and increased hepatic lipid accumulation, probably due to the presence of trans-10, cis-12 CLA isomer, while ROSI failed to significantly attenuate both hepatic steatosis and reduction in milk fat content.  相似文献   

5.
Dietary supplementation with marine omega‐3 polyunsaturated fatty acids (n‐3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n‐3 PUFA rich food supplements (freeze‐dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high‐fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high‐fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high‐fat diet supplemented with 12 % of freeze‐dried O. aurita. After 8 weeks rats fed with the high‐fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high‐fat diet‐induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze‐dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n‐3 PUFA but also other bioactive compounds of the microalgae.  相似文献   

6.
This study aimed to determine and to compare the main phytochemicals from soybean and soybean germ of different Chinese varieties. The results indicate that the soybean germ contains low protein (38.19 %), lipids (10.98 %), and crude fiber (7.47 %) compared with soybean. Specific gravity, refractive index, and saponification values of soybean germ oil were comparable to those of soybean oil. However, unsaponifiable matter of the germ oil was significantly higher (6.982 %) than soybean oil (1.072 %). The tocopherol contents in soybean germ oil ranged as follows: γ-tocopherol, 176.39 mg/100 g oil; δ-tocopherol, 57.29 mg/100 g oil; α-tocopherol, 50.67 mg/100 g oil; and β-tocopherol, 8.15 mg/100 g oil. The main sterols in soy germ oil were β-sitosterol (1,681.90 mg/100 g oil), crevesterol (358.02 mg/100 g oil), stigmasterol (189.62 mg/100 g oil), and brassicasterol (3.70 mg/100 g oil). Furthermore, soybean germ oil seemed to be an important source of triglyceride, fatty acids, and particularly the fatty acids in the sn-2 position of triacylglycerol. The important nutritional value of all these phytochemicals makes soybean germ and particularly germ oil sources of functional molecules and additives for the food industry.  相似文献   

7.
The objective of this study was to evaluate the beneficial effect of α‐linolenic acid‐rich black raspberry seed (BRS) oil on lipid metabolism in high‐fat diet (HFD)‐induced obese and db/db mice. Five‐week‐old C57BL/6 mice were fed diets consisting of 50% calories from lard, 5% from soybean, and 5% from corn oil (HFD), or 50% calories from lard and 10% from BRS oil (HFD + BRS oil diet) for 12 weeks. Six‐week‐old C57BL/KsJ‐db/db mice were fed diets consisting of 16% calories from soybean oil (standard diet), 8% from soybean, and 8% from BRS oil, or 16% from BRS oil for 10 weeks. The BRS oil diets lowered the levels of triacylglycerol, nonesterified fatty acids, and total cholesterol in serum and liver of both of the obese and db/db mice as compared with the HFD and standard diet, respectively. mRNA levels of lipogenesis markers including cluster of differentiation 36, fatty‐acid‐binding protein 1, sterol regulatory element binding protein 1c, fatty‐acid synthase, and solute carrier family 25 member 1 in the liver of the BRS oil groups were lower than those in the liver of the HFD and standard groups in the obese and db/db mice, respectively. On the other hand, fatty‐acid oxidation markers including carnitine palmitoyltransferase 1A, acyl‐CoA dehydrogenase, hydroxylacyl‐CoA dehydrogenase α, and acyl‐CoA oxidase in the liver of the BRS oil groups were higher than those in the liver of the HFD and standard groups in the obese and db/db mice, respectively. Peroxisome proliferator‐activated receptor α mRNA and protein levels increased in the liver and epididymal adipose tissue of the obese and db/db mice fed BRS oil compared with HFD and standard diet, respectively. BRS oil might improve lipid metabolism by inhibiting lipogenesis and promoting fatty‐acid oxidation in HFD‐induced obese and db/db mice.  相似文献   

8.
Atherosclerosis and NAFLD are the leading causes of death worldwide. The hallmark of NAFLD is triglyceride accumulation caused by an imbalance between lipogenesis de novo and fatty acid oxidation. Agmatine, an endogenous metabolite of arginine, exerts a protective effect on mitochondria and can modulate fatty acid metabolism. In the present study, we investigate the influence of agmatine on the progression of atherosclerotic lesions and the development of hepatic steatosis in apoE−/− mice fed with a Western high-fat diet, with a particular focus on its effects on the DNL pathway in the liver. We have proved that treatment of agmatine inhibits the progression of atherosclerosis and attenuates hepatic steatosis in apoE−/− mice on a Western diet. Such effects are associated with decreased total macrophage content in atherosclerotic plaque as well as a decrease in the TG levels and the TG/HDL ratio in plasma. Agmatine also reduced TG accumulation in the liver and decreased the expression of hepatic genes and proteins involved in lipogenesis de novo such as SREBP-1c, FASN and SCD1. In conclusion, agmatine may present therapeutic potential for the treatment of atherosclerosis and fatty liver disease. However, an exact understanding of the mechanisms of the advantageous actions of agmatine requires further study.  相似文献   

9.
The chronic intake of fructose has been linked to insulin resistance, obesity, dyslipidemia and nonalcoholic fatty liver disease (NAFLD), which in turn, may progress to nonalcoholic steatohepatitis (NASH). We aimed to evaluate the magnitude of the effects of the chronic consumption of high-fructose (HFr) and high fat (HF) alone or combined. Four groups of male mice were fed different diets for 16 weeks: standard chow (9% fat: SC), HF diet (42% fat), HFr diet (34% fructose) and HF/HFr diet (42% fat, 34% fructose). The food intake was not different among the groups, and the body mass was not greater in the HFr group than in the SC group. The homeostasis model assessment for insulin resistance (HOMA-IR), as well as plasmatic total cholesterol and triglycerides were greater in the groups HF, HFr, and HF/HFr group than in the SC group. We observed in the groups HF, HFr and HF/HFr, compared to the group SC, nonalcoholic fatty liver disease (NAFLD) with a predominance of lipogenesis mediated by SREBP-1c and PPAR-γ, and a reduction of the oxidation mediated by PPAR-α. We also observed an increase in gluconeogenesis mediated by the GLUT-2 and the PEPCK. Importantly, we identified areas of necroinflammation indicating a transition from NAFLD to nonalcoholic steatohepatitis in the HFr and HF/HFr groups. This study is relevant in demonstrating that fructose consumption, even in the absence of obesity, causes serious and deleterious changes in the liver with the presence of the dyslipidemia, insulin resistance (IR), and NAFLD with areas of necroinflammation. These conditions are associated with a poor prognosis.  相似文献   

10.
11.
Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis.  相似文献   

12.
The impact of a moderate Zn deficiency on growth and plasma and liver lipids was investigated in two 4-week experiments with male weanling rats fed fat-enriched diets. Semisynthetic, approximately isocaloric diets containing 3% soybean oil were supplemented with either 7 or 100 mg Zn/kg diet and with 22% beef tallow (BT) or sunflower oil (SF). In Experiment 1, which compared the dietary fat level and the fat source in a factorial design of treatments, all diets were fed ad libitum to 6 × 8 animals, whereas intake of the high-Zn BT and SF diets was restricted in Experiment 2 (5 × 6 rats) to the level of intake of the respective low-Zn diets. The low-Zn SF diet consistently depressed food intake and final live weights of the animals to a greater extent than the other low-Zn diets, while intake and growth were comparable among the animals fed the high-Zn diets. The marginal Zn deficit per se did not alter plasma triglyceride and cholesterol concentrations nor hepatic concentrations of triglyceride, cholesterol and phospholipids. The fatty acid pattern of liver phospholipids did not indicate that chain elongation and desaturation of fatty acids was impaired by a lack of zinc. It was concluded that dietary energy and fat intake, and fat source have a greater effect on plasma and liver lipids than a moderate Zn deficiency. Marginally Zn-deficient diets enriched with sunflower oil as a major energy source cause a greater growth retardation than diets rich in carbohydrates or beef tallow.  相似文献   

13.
This study analyses the effects of dietary lipid level and source on lipid absorption and metabolism in Senegalese sole (Solea senegalensis). Juvenile fish were fed 4 experimental diets containing either 100 % fish oil (FO) or 25 % FO and 75 % vegetable oil (VO; rapeseed, linseed and soybean oils) at two lipid levels (~8 or ~18 %). Effects were assessed on fish performance, body proximate composition and lipid accumulation, activity of hepatic lipogenic and fatty acid oxidative enzymes and, finally, on the expression of genes related to lipid metabolism in liver and intestine, and to intestinal absorption, both pre‐ and postprandially. Increased dietary lipid level had no major effects on growth and feeding performance (FCR), although fish fed FO had marginally better growth. Nevertheless, diets induced significant changes in lipid accumulation and metabolism. Hepatic lipid deposits were higher in fish fed VO, associated to increased hepatic ATP citrate lyase activity and up‐regulated carnitine palmitoyltransferase 1 (cpt1) mRNA levels post‐prandially. However, lipid level had a larger effect on gene expression of metabolic (lipogenesis and β‐oxidation) genes than lipid source, mostly at fasting. High dietary lipid level down‐regulated fatty acid synthase expression in liver and intestine, and increased cpt1 mRNA in liver. Large lipid accumulations were observed in the enterocytes of fish fed high lipid diets. This was possibly a result of a poor capacity to adapt to high dietary lipid level, as most genes involved in intestinal absorption were not regulated in response to the diet.  相似文献   

14.
CLA has been reported to have beneficial and controversial effects on glucose and lipid metabolism. Besides, high fat (HF) diets induce alterations in liver and muscle lipid deposition, which could be associated with anomalous glucose utilization. Therefore, our aim was to evaluate whether the intake of CLA could prevent alterations in glycolytic intermediate metabolites and glycogen deposition induced by a HF diet. For this purpose, growing mice were fed a control diet (7% corn oil), a HF diet (20% corn oil), or a HF diet containing 17% corn oil + 3% CLA for 30 days. Liver and muscle glucose intermediate metabolites and glycogen were assessed. Liver glycolysis was inhibited by HF, reflected by a decreased flow of substrates through phosphofructokinase‐1α linked to elevated citrate. CLA at HF diet prevented these alterations while increasing the lactate and glycogen synthesis. In the muscle, the HF diet emphasized the reduction of the flux through phosphofructokinase‐1α, without additional changes in total glycogen levels. In conclusion, dietary CLA partially prevented glycolytic pathway alterations in the liver but not in the muscle of mice fed a HF diet, associated with adverse effects as sustained hyperglycemia and hepatic lactate accumulation. Practical applications: The present study evaluates the potential use of CLA and its consequences on several aspects of glucose metabolism. Considering that the FDA has recently approved CLA as a Generally Recognized as Safe (GRAS) category, a measure that will foster the commercial production of food and beverages with CLA supplementation, we believe it is relevant to study its potential functional properties on glucose metabolism in an experimental animal model characterized by alterations in liver and muscle lipid deposition.  相似文献   

15.
The accumulation of hepatic lipid droplets (LDs) is a hallmark of non-alcoholic fatty liver disease (NAFLD). Appropriate degradation of hepatic LDs and oxidation of complete free fatty acids (FFAs) are important for preventing the development of NAFLD. Histone deacetylase (HDAC) is involved in the impaired lipid metabolism seen in high-fat diet (HFD)-induced obese mice. Here, we evaluated the effect of MS-275, an inhibitor of HDAC1/3, on the degradation of hepatic LDs and FFA oxidation in HFD-induced NAFLD mice. To assess the dynamic degradation of hepatic LDs and FFA oxidation in fatty livers of MS-275-treated HFD C57BL/6J mice, an intravital two-photon imaging system was used and biochemical analysis was performed. The MS-275 improved hepatic metabolic alterations in HFD-induced fatty liver by increasing the dynamic degradation of hepatic LDs and the interaction between LDs and lysozyme in the fatty liver. Numerous peri-droplet mitochondria, lipolysis, and lipophagy were observed in the MS-275-treated mouse fatty liver. Biochemical analysis revealed that the lipolysis and autophagy pathways were activated in MS-275 treated mouse liver. In addition, MS-275 reduced the de novo lipogenesis, but increased the mitochondrial oxidation and the expression levels of oxidation-related genes, such as PPARa, MCAD, CPT1b, and FGF21. Taken together, these results suggest that MS-275 stimulates the degradation of hepatic LDs and mitochondrial free fatty acid oxidation, thus protecting against HFD-induced NAFLD.  相似文献   

16.
The effects of dietary highly hydrogenated soybean oil (HSO) upon the changes caused by dietary polychlorinated biphenyls (PCBs) were examined in rats. Six groups of rats were fed the following diets for 30 d: a 20% soybean oil-containing diet (control diet), a diet in which a half of soybean oil was substituted with HSO (HSO-A diet), a diet in which cellulose powder was replaced with HSO (HSO-B diet) and these diets supplemented with 100 ppm PCBs (control+PCBs, HSO-A+PCBs and HSO-B+PCBs diets). Hepatic concentration of PCBs and relative liver weight were markedly decreased in rats fed with the HSO-A+PCBs diet compared with those fed with the other diets containing PCBs. Liver lipids and liver cholesterol were considerably decreased with a reciprocal increase in fecal sterol excretion by rats fed the HSO-A+PCBs and the HSO-B+PCBs diets compared with those fed with the control+PCBs diet. The fatty acid composition in hepatic phospholipids showed an independent increase of the saturated fatty acid content induced by dietary HSO and PCBs. Dietary PCBs also caused decreases in the amounts of monounsaturated and n-3 polyunsaturated fatty acids. These results suggest that dietary HSO prevents accumulation of PCBs in the liver and promotes the excretion of lipids stimulated by PCBs, accompanied by a change in fatty acid metabolism.  相似文献   

17.
We investigated the relationship between dietary highly hydrogenated soybean oil (HSO) and cholesterol transport in rats. In the first study, to examine the effects of cholesterol transport of different concentrations of HSO in dietary oil, rats were given one of the three diets containing 0, 25, or 50% HSO in dietary oil with cholesterol (5 g/kg diet) or a diet without HSO and cholesterol for 22 d. Feeding the high concentration of HSO prevented the increase in plasma total cholesterol, hepatic total lipids, and cholesterol and the decrease in high-density lipoprotein-cholesterol, which were caused by dietary cholesterol. Moreover, HSO increased the fecal excretion, fecal lipids, and steroids in a dose-dependent manner. In the second study, to examine the effects on cholesterol transport of redistribution of stearic acid in the triacylglycerol species contained in HSO, rats were given one of the six diets containing HSO (distearoylmonoacylglycerol and tristearoylglycerol)-rich, monostearoylglycerol-rich, or palmitic acid-rich oil with/without cholesterol (5 g/kg diet), for 30 d. Whereas the accumulation of cholesterol in the body was reduced, cholesterol excretion was enhanced effectively in rats given the HSO-rich diet compared with rats given the monostearoylglycerol-rich diet. These results suggested that not only the high concentration of stearic acid but also its uneven distribution in HSO-triacylglycerol contributed to the reduction in intestinal cholesterol absorption in rats.  相似文献   

18.
The aim of this study was to investigate whether tumor-induced cachexia and aberrations in host liver metabolism, induced by the MAT-LyLu variant of the Dunning prostate tumor, could be prevented by ω3 fatty acids from fish oil. On day 0, adult Copenhagen-Fisher rats fed normal chowad libitum were inoculated with 106 MAT-LyLu cells (n=14) or saline (n=9). On day 7, when tumors were palpable, four tumor-bearing (TB) and four nontumorbearing (NTB) rats were put on isocaloric diets with 50% of total energy as fish oil. The introduction of fish oil-enriched diets caused a reduction in energy intake to less than half of the energy intake by animals fed normal diets during days 7–14 (difference by dietary group: NTB,P<0.001; TB,P<0.001). During days 14–21, energy intake in fish oil-fed animals returned to approximately 75% of energy intake by animals fed normal diets (difference by dietary group: NTB,P<0.003; TB,P=0.001). Carcass weight of animals on day 21, when the study was terminated, was significantly related to initial weight (P=0.05) and mean food intake during the study (P=0.01). When data were adjusted for these variables using analysis of covariance, with NTB animals on normal diets being the reference group, significant loss of carcass weight was observed in TB animals on normal diets only (mean ±SEM 58±10 g loss,P<0.001), but not in TB animals on fish oil diets (8±18 g loss,P=0.67). This positive effect of fish oil diets on carcass weight in TB animals was statistically significant (50±19 g,P<0.02), implicating that the fish oil enriched diet inhibited tumor-induced weight loss by more than 85%. No effect of fish oil diets on tumor growth was detected. In all TB animals, regardless of diet, hepatic [Pi]/adenosine triphosphate] ratios measured by31P magnetic resonance spectroscopy (MRS)in vivo andin vitro were elevated, and absolute concentrations of phosphocholine, glycerophosphocho-line, glycerophosphoethanolamine and glucose-6-phosphate as determined by31P MRSin vitro were reduced. Ultrastructural studies of liver tissue revealed increased numbers of mitochondria and increased amounts of endoplasmic reticulum in the host liver of TB animals, without differences between dietary group. In conclusion, fish oil supplementation partially inhibited MAT-LyLu tumor-induced cachexia, but did not prevent the majority of31P MRS-detectable alterations in host liver metabolism.  相似文献   

19.
20.
Hydroxy lipids (L-OH) and 4-hydroxy-2-hexenal (HHE) levels as well as other parameters such as lipid level, lipid class, fatty acid composition, and other aldehydes levels in the liver of diseased fish were investigated. Although significant differences in lipid level, lipid class, fatty acid composition, and other aldehyde levels were not always observed between normal and diseased fish, L-OH and HHE levels were significantly higher in the liver of the diseased fish than in that of the normal fish cultured with the same feeds under the same conditions. In the liver of puffer fish (Fugu rubripes) infected with Trichodina, L-OH and HHE levels significantly increased from 25.29 ± 5.04 to 47.70 ± 5.27 nmol/mg lipid and from 299.79 ± 25.25 to 1,184.40 ± 60.27 nmol/g tissue, respectively. When the levels of HHE and other aldehydes in the liver of the normal and diseased puffer fish were plotted, a linear relationship with a high correlation coefficient was observed between HHE and propanal (r 2 = 0.9447). Increased L-OH and HHE levels in the liver of the diseased fish and a high correlation between HHE and propanal in the liver of the normal and diseased fish were also observed in flat fish (Paralichthys olivaceus) infected with streptococcus, yellowtail (Seriola quinqueradiata) infected with jaundice, and amberjack (S. purpurascens) infected with Photobacterium damselae subsp. piscicida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号