首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is evidence that sympathetic nerve activity leads to endothelium-derived nitric oxide release, which in turn attenuates neurogenic vasoconstriction. Here we tested in vivo (1) whether the magnitude of the vasoconstriction induced by N(G)-nitro-L-arginine methyl ester given systemically is altered when ongoing sympathetic activity is abolished by sectioning the lumbar sympathetic trunk, and (2) whether hindlimb sympathetic vasoconstriction elicited by electrical stimulation of the lumbar sympathetic trunk is enhanced after inhibition of nitric oxide synthesis. Blood flow in the microvascular beds of hairless skin and skeletal muscle of the rat hindlimb was measured with laser Doppler flowmetry. Sectioning the lumbar sympathetic trunk resulted in an increase of blood flow in both tissues, indicating that tonic neurogenic vasoconstriction was abolished. Inhibition of nitric oxide synthesis resulted in vasoconstriction in both vascular beds. This vasoconstriction was more pronounced after abolition of sympathetic activity than with intact sympathetic supply in skin but was smaller in skeletal muscle. The vasoconstriction elicited by graded electrical stimulation of the centrally sectioned lumbar sympathetic trunk with frequencies less than 5 Hz was significantly enhanced after blockade of nitric oxide in skeletal muscle but not in skin microvasculature. These findings suggest that under physiological conditions, sympathetic nerve impulses directly promote the release of nitric oxide in skeletal muscle but not in cutaneous blood vessels. Therefore, basal nitric oxide release is probably in part dependent on sympathetic activity in skeletal muscle, whereas it appears to be mainly due to flow-dependent shear stress in hairless skin microvasculature.  相似文献   

2.
1. The objectives of the present study were to study regional differences in haemodynamics between spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats induced by the nitric oxide synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA) and the endothelin ETA receptor antagonist BQ 123 in vivo in tissues known to be important for blood pressure (BP) regulation (heart, kidney and skeletal muscle). Furthermore, the effect of acetylcholine (ACh) infusion (2 micrograms/kg per min) was examined after L-NMMA or BQ 123. The microsphere method was used for determinations of cardiac index (CI) and regional haemodynamics. 2. NG-Monomethyl-L-arginine (20 mg/kg) increased BP (26-48%; P < 0.01) and reduced CI in both rat strains. BQ 123 (1 mg/kg) reduced BP slightly (-4 to 11%; P < 0.05). 3. NG-Monomethyl-L-arginine significantly increased myocardial and skeletal muscle vascular resistance in SHR only; however, in the kidney, L-NMMA reduced blood flow and increased vascular resistance in both rat strains. 4. BQ 123 induced minor changes in regional haemodynamics that were not significantly different between the two strains. 5. Acetylcholine following BQ 123 induced an increase in myocardial blood flow in WKY rats, but decreased blood flow in SHR. Acetylcholine following L-NMMA reduced myocardial blood flow in both strains. 6. Acetylcholine following BQ 123 induced renal vasodilation in WKY rats but, following L-NMMA, ACh did not induce renal vasodilation in either rat strain. In contrast, L-NMMA did not abolish the vasodilation of acetylcholine in skeletal muscle in WKY rats. 7. In conclusion, the contribution of nitric oxide to basal vessel tone was not impaired in the heart, skeletal muscle and kidney in SHR. Antagonism of ETA receptors caused similar haemodynamic responses in both rat strains in these organs. Furthermore, NOS inhibition, but not ETA blockade, blunted the expected ACh-induced vasodilation in the heart and kidney in WKY rats, but not in skeletal muscle in both strains.  相似文献   

3.
The effects of electrical stimulation, applied to the superior salivatory nucleus (SSN) or the cervical sympathetic nerve, on vascular permeability in nasal mucosa were studied in 16 cats. Plasma extravasation was quantified by using Evans blue. Vascular permeability in the cat nasal mucosa was increased by the electrical stimulation of SSN. Plasma extravasation induced by SSN stimulation was reduced by administration of nitric oxide synthase (NOS) antagonist, N(omega)-nitro-L-arginine methyl ester (L-NAME). Administration of atropine did not affect increased vascular permeability by SSN stimulation. We conclude that neurogenic plasma extravasation in cat nasal mucosa evoked by the parasympathetic nerve is not mediated by cholinergic fibers but rather by nitric oxide.  相似文献   

4.
BACKGROUND: Nitric oxide (NO) blockade by L-nitroarginine methyl ester (L-NAME) inhibits pancreatic secretion in vivo and aggravates caerulein induced pancreatitis. Nitric oxide synthase (NOS) is present in pancreatic islets, endothelium, and nerve fibres. L-NAME blocks all known NOS isoforms. AIM: To investigate the source of NO blocked by L-NAME that inhibits amylase secretion. METHODS: Amylase output was measured in rats in response to caerulein (0.1-50 microg/kg) alone or with indazole. Baseline secretion and the response to supramaximal caerulein were also examined after administration of indazole, L-NAME, haemoglobin, or aminoguanidine under continuous blood pressure measurement. In separate experiments, pancreatic secretion was measured after blockade of afferent nerve fibres by either systemic or local capsaicin. The effect of neural NOS inhibition on caerulein induced pancreatitis was also investigated. RESULTS: L-NAME, haemoglobin, and supramaximal caerulein (10 microg/kg) increased blood pressure, whereas indazole and suboptimal caerulein (0.1 microg/kg) did not. Indazole and capsaicin decreased basal amylase output. L-NAME and haemoglobin reduced basal amylase output to a lesser extent and potentiated the inhibitory response to supramaximal caerulein. In contrast, full neural NOS inhibition by L-NAME partially reversed the expected caerulein induced suppression of amylase output. This effect was reproduced by indazole and capsaicin. Indazole did not alter responses to either optimal (0.25 microg/kg) or suboptimal (0.1 microg/kg) caerulein, nor, in contrast with L-NAME, aggravate the outcome of caerulein induced pancreatitis. CONCLUSIONS: Reduction of circulating NO availability, probably of endothelial origin, is responsible for the decrease in amylase secretion observed in the early response to L-NAME. Nitrergic neurotransmission plays an important role in the control of pancreatic secretion and may induce opposite effects to endothelial NOS activity.  相似文献   

5.
The ability of an integrin-binding Arg-Gly-Asp-Asn (RGDN)- containing peptide to influence vascular tone by interacting with the alpha5beta1 integrin was studied using rat skeletal muscle arterioles. After blockade of beta3 integrin function, isolated arterioles with spontaneous tone showed concentration-dependent vasoconstrictions to topical application of GRGDNP, a peptide that shows a greater ability to interact with alpha5beta1 than with alphavbeta3. The constriction to GRGDNP (2.1 mM) was inhibited by blocking alpha5 integrin function, and was intensified by blocking beta3 integrin function. In contrast, GRGDSP, a peptide that interacts better with alphavbeta3, was unable to induce sustained constrictions. Removal of the endothelium abolished the vasoconstriction in response to GRGDNP, suggesting that the response was due to release of an endothelium-dependent factor. Indeed, blockade of ETA endothelin receptors with BQ-610 (1 microM), similar to removal of the endothelium and alpha5 integrin blockade, inhibited the vasoconstriction. These data indicate that interaction of RGD peptides, and in particular the RGDN sequence with endothelial cell alpha5beta1, causes endothelin-mediated arteriolar vasoconstriction. These results indicate that integrins are novel signaling receptors within the vascular wall that affect vasomotor tone, and may play an important role in vascular control.  相似文献   

6.
We observed endothelin (ET)-induced contractile responses on prostatic and epididymal segments, as well as the facilitation of an electrically stimulated tone on prostatic segments of isolated rat vas deferens. In both segments, the selective ET(B)-receptor agonists, IRL 1620 and sarafotoxin S6c, produced only a small contraction or no contraction at a concentration of 1 microM. The rank order of contraction potencies (pD2 value) was ET-1 = ET-2 > ET-3 > sarafotoxin S6c = IRL 1620. The maximum responses of ET-induced contractions in the prostatic segments were larger than those in the epididymal segments. The contractile response to ET-3 was antagonized by pretreatment for 30 min with BQ-123 (10 nM), a selective ET(A) receptor antagonist, and BQ-788 (1 microM), a selective ET(B) receptor antagonist. The contractile responses to ET-1 were antagonized by pretreatment with BQ-123 (10 microM), but not with BQ-788 (1 microM). The ET-3-induced facilitation on the twitch response to electrical stimulation in the prostatic segment of the vas deferens was antagonized by BQ-123 (0.1 microM) and BQ-788 (1 microM). The ET-1-induced facilitation was antagonized by pretreatment with BQ-123 (3 microM), but not with BQ-788 (10 microM). These results suggest that in rat vas deferens the ET(A) receptors are divided into BQ-123-sensitive ET(A1) and BQ-123-insensitive ET(A2) subtypes, and the production of a contractile response of smooth muscle as well as the facilitation of neurotransmission are accomplished through mediation by ET(A1)- and ET(A2)-subtypes.  相似文献   

7.
Previous studies showed variable success of angiotensin II (ANG II) antagonists to oppose systemic and renal vasoconstriction during long-term nitric oxide synthase (NOS) inhibition. We explored in short-term experiments whether the systemic and renal vasodilatory response to angiotensin II type 1 (AT1)-receptor blockade depends on the extent of NOS blockade. In the first series of experiments, anesthetized rats underwent clearance studies during continuous monitoring of mean arterial pressure (MAP), renal blood flow (RBF, flow probe), and renal vascular resistance (RVR). Compared with control animals, low-dose infusion of the NOS-inhibitor nitro-L-arginine (NLA) increased MAP and RVR, decreased glomerular filtration rate, RBF, and sodium excretion, and had no effect on plasma and kidney ANG II content. High-dose NLA induced stronger effects, did not affect plasma ANG II, and reduced kidney ANG II to approximately 60%. In the second series of experiments, we studied the effect of low- and high-dose NLA on autoregulation of RBF. NLA induced a dose-dependent increase in MAP and decrease in RBF but left autoregulation intact. The AT1-receptor antagonist losartan restored MAP and RBF during low-dose NLA but had no depressor or renal vasodilating effect during high-dose NLA. In summary, short-term NOS blockade causes a dose-dependent pressor and renal vasoconstrictor response, without affecting renal autoregulation, and AT1-receptor blockade restores systemic pressor and renal vasoconstrictive effects of mild NOS inhibition but fails to exert vasorelaxation during strong NOS blockade. Both levels of NOS inhibition did not importantly alter intrarenal ANG II levels. Apparently the functional role of endogenous ANG II as determinant of vascular tone is diminished during strong NOS inhibition.  相似文献   

8.
BACKGROUND: Endothelin-1 generated by the vascular endothelium contributes to basal vascular tone and blood pressure in healthy humans. Plasma concentrations of endothelin-1, which are elevated in chronic renal failure (CRF), may contribute to increased vascular tone. METHODS: We investigated the contribution of endogenous and exogenous endothelin-1 to the maintenance of vascular tone in patients with CRF (creatinine > or = 200 mumol/liter) and in age- and sex-matched healthy subjects. In a series of experiments, we measured forearm vascular responses to intra-arterial norepinephrine (30 to 240 pmol/min), endothelin-1 (5 pmol/min), the selective endothelin A (ETA) receptor antagonist BQ-123 (3 mg/hr), the mixed endothelin-converting enzyme and neutral endopeptidase inhibitor phosphoramidon (30 nmol/min), and the selective neutral endopeptidase inhibitor thiorphan (30 nmol/min). RESULTS: The maximum reduction in forearm blood flow (FBF) to norepinephrine in CRF (33 +/- 7%) was similar to that in controls (43 +/- 7%, P = 0.53). Endothelin-1 also produced a similar reduction in FBF in CRF (35 +/- 6%) and controls (36 +/- 5%, P = 0.81). BQ-123 increased FBF in CRF (11 +/- 4%) but significantly less than in controls (44 +/- 10%, P = 0.02). Phosphoramidon increased FBF in CRF (68 +/- 20%), again significantly less than in controls (181 +/- 41%, P = 0.001). Thiorphan reduced FBF similarly in CRF (22 +/- 6%) and controls (14 +/- 6%, P = 0.39). Responses to phosphoramidon were substantially greater than to BQ-123. CONCLUSIONS: These studies show that endogenous generation of endothelin-1 contributes to the maintenance of resting vascular tone in patients with CRF, as well as in healthy subjects. Although the contribution of endogenous endothelin-1 to resting vascular tone appears to be reduced in CRF, ETA receptor antagonism, and particularly endothelin-converting enzyme inhibition, should be explored as means by which to reduce vascular tone and blood pressure in patients with CRF.  相似文献   

9.
1. To examine further the potentiation by endothelin-1 on the vascular response to sympathetic stimulation, we studied the isometric response of isolated segments, 2 mm long, from the rabbit central ear artery to electrical field stimulation (1-8 Hz), under different conditions, at 37 degrees C and during cooling (30 degrees C). 2. Electrical stimulation produced frequency-dependent contraction, which was reduced (about 63% for 8 Hz) during cooling. At 30 degrees C, but not at 37 degrees C, endothelin-1 (1, 3 and 10 nM) potentiated the contraction to electrical stimulation in a dose-dependent way (from 43 +/- 7% to 190 +/- 25% for 8 Hz). 3. This potentiation by endothelin-1 was reduced by the antagonist for endothelin ETA receptors BQ-123 (10 microM) but not by the antagonist for endothelin ETB receptors BQ-788 (10 microM). The agonist for endothelin ETB receptors IRL-1620 (0.1 microM) did not modify the contraction to electrical stimulation. 4. The blocker of L-type Ca2+ channels verapamil (10 microM l-1) reduced (about 72% for 8 Hz) and the unspecific blocker of Ca(2+)-channels NiCl2 (1 mM) practically abolished (about 98%), the potentiating effects of endothelin-1 found at 30 degrees C. 5. Inhibition of nitric oxide synthesis with NG-nitro-L-arginine (L-NOARG, 0.1 mM) increased the contraction to electrical stimulation at 30 degrees C more than at 37 degrees C (for 8 Hz, this increment was 297 +/- 118% at 30 degrees C, and 66 +/- 15% at 37 degrees C). Endothelium removal increased the contraction to electrical stimulation at 30 degrees C (about 91% for 8 Hz) but not at 37 degrees C. Both L-NOARG and endothelium removal abolished the potentiating effects of endothelin-1 on the response to electrical stimulation found at 30 degrees C. 6. These results in the rabbit ear artery suggest that during cooling, endothelin-1 potentiates the contraction to sympathetic stimulation, which could be mediated at least in part by increasing Ca2+ entry after activation of endothelin ETA receptors. This potentiating effect of endothelin-1 may require the presence of an inhibitory tone due to endothelial nitric oxide.  相似文献   

10.
BACKGROUND: Sympathetic nerve activity is increased in patients with severe heart failure. Whether this intense sympathoexcitation is normalized after heart transplantation, despite cyclosporine A treatment, is still unsettled. In the present study, regional sympathetic function in 12 patients with severe heart failure, awaiting heart transplantation, was compared with that in 15 heart transplant recipients and 12 healthy subjects. METHODS: Total and regional sympathetic activity in the heart and kidney were evaluated with isotope dilution, using steady-state infusion of [3H] norepinephrine. Sympathetic nerve traffic to skeletal muscle vascular bed was recorded intraneurally with microneurography. RESULTS: Total body, cardiac, and renal norepinephrine spillovers were high in the heart failure group (6792 +/- 455, 385 +/- 74, and 1554 +/- 114 pmol/min, respectively) as was muscle sympathetic nerve activity (82 +/- 5 bursts/min). Transplant recipients showed a marked reduction of total body (3200 +/- 307 pmol/min) and renal (747 +/- 169 pmol/min) norepinephrine spillovers and sympathetic nerve firing to skeletal muscle (22 +/- 6 bursts/min), none of which differed from healthy subjects. CONCLUSIONS: The augmentation of total body and regional sympathetic outflow to the kidney and skeletal muscle vascular beds, associated with a failing heart, was normalized after transplantation. Thus, sympathoexcitation in heart failure is reversible. Furthermore, because all heart transplant recipients received cyclosporine A, the findings do not support the concept that cyclosporine-induced hypertension is mediated by increased sympathetic nerve activity.  相似文献   

11.
Endothelin-1 is an endothelium-derived vasoconstrictor peptide, possibly involved in the pathophysiology of cardiovascular disease. We examined the contribution of endogenously generated endothelin-1 to maintenance of peripheral vascular tone in healthy subjects by local intraarterial administration of an inhibitor of endothelin converting enzyme, phosphoramidon, and of a selective endothelin receptor A antagonist, BQ-123. Brachial artery infusion of local doses of proendothelin-1, the precursor to endothelin-1, caused a slow-onset dose-dependent forearm vasoconstriction which was abolished by co-infusion of phosphoramidon. Phosphoramidon did not affect responses to endothelin-1. Phosphoramidon caused slow-onset vasodilatation when infused alone, with blood flow increasing by 37% at 90 min (p = 0.03). Vasoconstriction to endothelin-1 was abolished by co-infusion of BQ-123 (p = 0.006), with forearm blood flow tending to increase. Infusion of BQ-123 alone caused progressive vasodilatation, with blood flow increasing by 64% after 60 min (p = 0.007). These results show that endogenous production of endothelin-1 contributes to the maintenance of vascular tone. Endothelin converting enzyme inhibitors and receptor antagonists may have therapeutic potential as vasodilators.  相似文献   

12.
BACKGROUND: Neutral endopeptidase (NEP) degrades vasoactive peptides, including the natriuretic peptides, angiotensin II, and endothelin-1. Systemic inhibition of NEP does not consistently lower blood pressure, even though it increases natriuretic peptide concentrations and causes natriuresis and diuresis. We therefore investigated the direct effects of local inhibition of NEP on forearm resistance vessel tone. METHODS AND RESULTS: Four separate studies were performed, each with 90-minute drug infusions. In the first study, 10 healthy subjects received a brachial artery infusion of the NEP inhibitor candoxatrilat (125 nmol/min), which caused a slowly progressive forearm vasoconstriction (12+/-2%; P=0.001). In a second two-phase study, 6 healthy subjects received, 4 hours after enalapril (20 mg) or placebo, an intra-arterial infusion of the NEP inhibitor thiorphan (30 nmol/min). Thiorphan caused similar degrees of local forearm vasoconstriction (P=0.6) after pretreatment with both placebo (13+/-1%, P=0.006) and enalapril (17+/-6%, P=0.05). In a third three-phase study, 8 healthy subjects received intra-arterial thiorphan (30 nmol/min), the endothelin ETA antagonist BQ-123 (100 nmol/min), and both combined. Thiorphan caused local forearm vasoconstriction (13+/-1%, P=0.0001); BQ-123 caused local vasodilatation (33+/-3%, P=0.0001). Combined thiorphan and BQ-123 caused vasodilatation (32+/-1%, P=0.0001) similar to BQ-123 alone (P=0.98). In a fourth study, 6 hypertensive patients (blood pressure >160/100 mm Hg) received intra-arterial thiorphan (30 nmol/min). Thiorphan caused a slowly progressive forearm vasoconstriction (10+/-2%, P=0.0001). CONCLUSIONS: Inhibition of local NEP causes vasoconstriction in forearm resistance vessels of both healthy volunteers and patients with hypertension. The lack of effect of ACE inhibition on the vasoconstriction produced by thiorphan and its absence during concomitant ETA receptor blockade suggest that it is mediated by endothelin-1 and not angiotensin II. These findings may help to explain the failure of systemic NEP inhibition to lower blood pressure.  相似文献   

13.
The nervous control of the retractor penis muscle (rp) was investigated in the anaesthetized goat. Also, isolated field stimulated strips of the muscle were studied. The noradrenaline (NA) and acetylcholine (ACh) content of the rp was determined, and histochemistry for adrenergic and acetylcholinesterase (AChE) positive nerves was performed. The muscle exhibited spontaneous activity that persisted after section of all nerves. There was, however, also a tendency of the activity to follow the general vasomotor tone, which disappeared after section of the sympathetic chains. The excitatory adrenergic nerves which innervate the muscle come from the sympathetic chains and run along the pudendal, the hypogastric and the pelvic nerves. The rp has a dense network of adrenergic fibres and is very sensitive to excitatory adrenergic stimulation. It has a fairly large NA content, which is higher in old goats (5.95 +/- 0.42 micrograms g-1) than in young goats (2.87 +/- 0.78 micrograms g-1). Inhibitory non-adrenergic non-cholinergic (NANC) innervation reaches it via the pelvic and the hypogastric nerves. The maximum inhibitory response is reached at low frequencies (2-4 Hz). Cholinergic prejunctional inhibition of the excitatory response to sympathetic chain stimulation was effected by simultaneous stimulation of the hypogastric nerves. In vitro experiments confirmed the presence of endogenous cholinergic muscarinic suppression of the excitatory adrenergic neurotransmission. Significant amounts of ACh (0.81 +/- 0.18 micrograms g-1) are present in the muscle, and it contains strongly AChE positive nerve fibres and nerve cell bodies. It is concluded that the goat rp is innervated by sympathetic adrenergic excitatory nerves and parasympathetic NANC inhibitory nerves. It further has a direct sympathetic inhibitory NANC innervation, and an indirect inhibitory cholinergic innervation which at least in part is sympathetic.  相似文献   

14.
The purpose of this study was to assess the effects of autonomic stimulation and blockade on noise levels and to compare the noise measurements in the ST and TP segments of the signal-averaged ECG. Five-minute electrocardiographic data were recorded in 14 normal volunteers (8 males and 6 females; mean age 28.5 +/- 5.0 years) on two separate days (day 1-baseline, epinephrine infusion, isoproterenol infusion, beta-blockade, and combined adrenergic and parasympathetic blockade; day 2-baseline, phenylephrine infusion, parasympathetic blockade, and during phenylephrine infusion following atropine). Signal averaging was done off-line on 100 beats and noise was measured in both the ST and TP segments as the standard deviation of voltage in the segment of interest. For all conditions tested, the mean noise level measured in the ST segment (0.46 +/- 0.16 microV) was significantly less than that measured in the TP segment (0.52 +/- 0.24 microV; P = 0.0003), but there was good correlation between the noise measured in the ST and the TP segment (R2 = 0.62, P < 0.0001). Noise increased with isoproterenol infusion and decreased following adrenergic blockade. In addition, day 2 baseline noise was less than baseline noise on day 1. Finally, neither parasympathetic stimulation or blockade nor alpha-adrenergic stimulation significantly affected signal-averaged electrocardiography (SAECG) noise levels. Thus, the data support the notion that enhanced sympathetic tone increases noise levels and beta-adrenergic blockade may decrease noise levels, likely due to effects from muscle sympathetic nerve activity. These findings are important since the target population for the SAECG are patients with myocardial infarction and congestive heart failure, conditions associated with increased sympathetic tone, which may in turn impact on the reproducibility or technical aspects of the SAECG. In addition, because noise in the ST and TP segments are highly correlated and the noise measured in the ST segment is less than that in the TP segment, uniform adoption of noise measurement in the ST segment seems most appropriate.  相似文献   

15.
PURPOSE: The aim of the present study is to analyze mechanisms underlying neurogenic relaxation of the corpus cavernosum which are believed to participate in penile erection. MATERIALS AND METHODS: Mechanical responses to nerve stimulation by electrical pulses and nicotine were measured in strips of canine corpus cavernosum precontracted with phenylephrine. Cyclic guanosine monophosphate (GMP) contents in the strips were also measured by radioimmunoassay. Immunohistochemistry for nitric oxide synthase (NOS) and vasoactive intestinal polypeptide (VIP) was performed. RESULTS: Transmural electrical stimulation and nicotine produced relaxations in the isolated canine corpus. The neurogenic relaxation was abolished by N omega-nitro-L-arginine, a NOS inhibitor, and the inhibition was reversed by L-arginine. Relaxations induced by nerve stimulation and exogenous nitric oxide (NO) were depressed by oxyhemoglobin and methylene blue. Vasoactive intestinal polypeptide (VIP)-induced relaxations were not influenced by these inhibitors. In the controls strips and those made unresponsive to VIP by its repeated application, the responses to nerve stimulation did not differ. The content of cyclic GMP in the tissue increased in response to nicotine, the effect being abolished by the NO synthase inhibitor. Immunohistochemical study demonstrated neurons containing NOS and VIP. CONCLUSIONS: It appears that the relaxation induced by nerve stimulation is mediated solely by NO liberated from the nerve that activates soluble guanylate cyclase and increases the production of cyclic GMP in smooth muscle, whereas VIP does not play a role in the regulation of muscle tone under the experimental conditions used.  相似文献   

16.
Endothelin-1 (0.25 nmol/kg, injected into the left cardiac ventricle) induces a protracted increase of mean arterial pressure that is significantly reduced by the selective ET(A) receptor antagonist BQ-123 (1 and 10 mg/kg) in the anesthetized rabbit. The sole administration of the selective ET(B) antagonist BQ-788 (0.25 mg/kg) induces a pressor response abolished by BQ-123 (1 mg/kg). Concomitant to the increase in mean arterial pressure, BQ-788 induces a significant increase in plasma levels of endothelin-1 and its precursor big endothelin-1. The nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg) also increases arterial blood pressure, and the response is reduced dose-dependently by BQ-123 (1 and 10 mg/kg). In addition, the administration of BQ-788 in the presence of L-NAME induced a further increase in arterial blood pressure. The duration of the pressor response to L-NAME is also significantly reduced by an endothelin-converting enzyme inhibitor, phosphoramidon (10 mg/kg). Finally, L-NAME induces an increase in plasma levels of big endothelin-1 but not endothelin-1. Our results illustrate that blockade of either nitric oxide synthase or ET(B) receptors triggers a raise in plasma levels of endothelin-1 or its precursor. These later moieties are suggested to be significantly involved, through the activation of ET(A) receptors, in the pressor effects of L-NAME and BQ-788 in the anesthetized rabbit.  相似文献   

17.
Euglycemic hyperinsulinemia evokes both sympathetic activation and vasodilation in skeletal muscle, but the mechanism remains unknown. To determine whether insulin per se or insulin-induced stimulation of carbohydrate metabolism is the main excitatory stimulus, we performed, in six healthy lean subjects, simultaneous microneurographic recordings of muscle sympathetic nerve activity, plethysmographic measurements of calf blood flow, and calorimetric determinations of carbohydrate oxidation rate. Measurements were made during 2 h of: (a) insulin/glucose infusion (hyperinsulinemic [6 pmol/kg per min] euglycemic clamp), (b) exogenous glucose infusion at a rate matched to that attained during protocol a, and (c) exogenous fructose infusion at the same rate as for glucose infusion in protocol b. For a comparable rise in carbohydrate oxidation, insulin/glucose infusion that resulted in twofold greater increases in plasma insulin concentrations than did glucose infusion alone, evoked twofold greater increases in both muscle sympathetic nerve activity and calf blood flow. Fructose infusion, which increased carbohydrate oxidation comparably, but had only a minor effect on insulinemia, did not stimulate either muscle sympathetic nerve activity or calf blood flow. These observations suggest that in humans hyperinsulinemia per se, rather than insulin-induced stimulation of carbohydrate metabolism, is the main mechanism that triggers both sympathetic activation and vasodilation in skeletal muscle.  相似文献   

18.
The role of nitric oxide (NO) as a bronchodilator has been studied in humans with controversial results. The aim of the present study was to investigate the role of endogenous NO on bronchial tone by studying whether nitric oxide synthase (NOS) inhibition with NGnitro-L-arginine-methyl-ester (L-NAME) influences basal bronchial tone, or potentiates methacholine-induced bronchoconstriction. In a preliminary experiment in five subjects, a significant reduction in exhaled NO was found after delivering L-NAME (15 mg in saline) (from 3.9 +/- 1.2 to 2.4 +/- 1.1 nmol min-1, P < 0.05). In nine healthy non-smokers, specific airway conductance (SGAW), as a measure of airway calibre, was recorded after delivering, in a double-blind, controlled vs. placebo fashion, both nebulized L-NAME and saline, at baseline and after methacholine-induced bronchoconstriction. There was no significant difference between the baseline SGAW values before and after delivering L-NAME (0.264 +/- 0.04 and 0.267 +/- 0.05 cm H2O-1 s-1, respectively). After pre-treatment with L-NAME, SGAW values during methacholine-induced bronchoconstriction were not different in comparison to values obtained after saline inhalation. It is concluded that decreased endogenous NO does not influence bronchial tone in healthy people, nor does it modify methacholine-induced bronchoconstriction.  相似文献   

19.
Recently, evidence has been presented that nitric oxide (NO) modulates myocardial contraction induced by beta-adrenergic stimulation in vitro and in vivo. In this study, we investigated whether inhibition of the L-arginine NO system augments the positive inotropic response of the left ventricle to direct stimulation of the sympathetic nerves in vivo in the dog. Electrical stimulation was applied to the left stellate ganglion (LSG) for 1 min at submaximal (5 V, 2.5, 5 and 10 Hz) and supramaximal intensities (10 V, 10 Hz) in twelve anesthetized and vagotomized dogs. Next, in the same dogs, N(omega)-nitro L-arginine methylester (L-NAME) was infused into the left anterior descending (LAD) coronary artery, and LSG stimulation repeated using the same protocol. Finally, L-arginine was infused into the LAD artery, and LSG stimulation repeated. We used the maximum of the first derivative of left ventricular pressure (LV max d P/dt) as an index of the myocardial contractility. Plasma epinephrine and norepinephrine concentrations were measured in the coronary sinus at 5 V, 2.5 Hz before and after L-NAME treatment in five of twelve dogs. L-NAME treatment significantly augmented the inotropic response of the left ventricle (percent change in the LV max dP/dt) to LSG submaximal stimulation trains from 164 +/- 13 to.212 +/- 21 (P < 0.03), from 187 +/- 15 to 234 +/- 25 (P < 0.05) and from 220 +/- 19 to 280 +/- 33% (P < 0.05), respectively. This response was reversed by L-arginine treatment. However, the inotropic response to the supramaximal stimulation train did not change after L-NAME and L-arginine treatment. L-NAME significantly increased plasma norepinephrine concentration from 0.69 +/- 0.41 to 1.00 +/- 0.52 ng/ml without changing plasma epinephrine concentration in the coronary sinus. It is concluded that the inhibition of the L-arginine NO system augmented the positive inotropic effect on the left ventricle during sympathetic nerve stimulation in normal dogs in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号