首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructure and tensile properties of a metal injection molding 0.23%C Co–Cr–Mo alloy (F75 alloy) were investigated. The as-sintered microstructure contains a significant amount of carbides, and is modified by solution annealing, the main effect being to reduce the amount of carbides. Ductility and ultimate tensile strength increase significantly, but yield strength decreases with solution annealing. Aging causes both intragranular and intergranular precipitation, which increases hardness and yield strength but decreases ductility excessively. In both as-sintered and solution-annealed conditions, the material displays noticeable work hardenability. By sintering at 1300 °C and solution annealing at 1220 °C, 440 MPa yield strength and 25% elongation at fracture are obtained.  相似文献   

2.
采用扫描电镜、能谱分析、金相显微镜与WDW-100KN万能拉伸试验机研究Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金的微观组织与力学性能,结合盘-销式摩擦磨损试验机考察合金不同组织状态的润滑性能。结果表明:Al-7Sn-1.1Ni-Cu-0.2Ti合金凝固收缩率为1.13%,铸态抗拉强度、屈服强度、伸长率与布氏硬度分别为191,147MPa,15.6%与34.6HBS,随着低温时效与退火热处理过程的进行,抗拉强度略有上升,屈服强度保持不变,伸长率与布氏硬度均呈现出先上升后下降的变化趋势;沿晶界分布的共晶Sn相形貌受界面张力作用逐步由板片状与骨骼状转变为层片状与短棒状,部分吸热脱溶析出在晶界处形成空腔结构,初生α-Al基体平均晶粒尺寸为182μm。与铸态和340℃退火6h相比,经175℃时效10h后,摩擦因数降低了28.6%与78.6%,体积磨损量减少了157.1%与471.4%,断口形貌以沿晶断裂与韧窝断裂为主。  相似文献   

3.
The effect of boron addition at 0,0.007 wt.% and 0.010 wt.% on the microstructure and mechanical properties of K4750 nickel-based superalloy was studied.The microstructure of the as-cast and heat-treated alloys was analyzed by SEM,EPMA,SIMS and TEM.Lamellar M5 B3-type borides were observed in boroncontaining as-cast alloys.After the full heat treatment,boron atoms released from the decomposition of M5 B3 borides were segregated at grain boundaries,which inhibited the growth and agglomeration of M23C6 carbides.Therefore,the M23C6 carbides along grain boundaries were granular in boron-containing alloys,while those were continuous in boron-free alloys.The mechanical prope rty analysis indicated that the addition of bo ron significantly improved the tensile ductility at room tempe rature and stress rupture properties at 750℃/430 MPa of K4750 alloy.The low tensile ductility at room temperature of 0 B alloy was attributed to continuous M23C6 carbides leaded to stress concentration,which provided a favorable location for crack nucleation and propagation.The improvement of the stress rupture properties of boron-containing alloys was the result of the combination of boron segregation increased the cohesion of grain boundaries and granular M23C6 carbides suppressed the link-up and extension of micro-cracks.  相似文献   

4.
高杰明  黄晖  石薇  魏午  文胜平  韩颖  聂祚仁 《材料工程》2022,50(11):101-108
使用硬度测量、室温拉伸、光学显微镜(OM)、电子背散射衍射(EBSD)、透射电镜(TEM)等测试方法,对不同退火处理的Al-6.0Mg-1.0Zn-0.8Mn-0.2Cu-0.2Er-0.1Zr热轧板的室温拉伸性能、晶间腐蚀性能和合金的宏微观组织进行了系统研究。结果表明:合金板材的稳定化工艺窗口为230℃/18 h,240℃/6 h,250~270℃/2 h;在250℃/2 h退火后,合金板材的屈服强度为263 MPa,失重值为6.732 mg/cm2。结合力学性能和腐蚀性能,优选250℃/2 h为热轧板的最佳稳定化工艺。通过选区电子衍射和能谱图分析,发现晶界与晶内的析出相均为T-Mg32(AlZn)49相。经过250℃/2 h退火后,晶内T相逐渐长大回溶,形貌由方块状转变为短棒状。而T相在晶界处呈断续分布,且间距变大,所以呈现良好的耐蚀性。  相似文献   

5.
Effect of heat treatment on the recovery of microstructure and mechanical properties of a service-exposed IN939 superalloy was studied. Four-stage heat treatment was performed on the service-exposed alloy. The microstructures of the service-exposed and rejuvenated alloys were examined by optical and scanning electron microscopes. The hardness, tension, and stress-rupture tests were carried out to characterise the mechanical properties. The results showed that the heat treatment could rejuvenate the microstructure of the alloy that was deteriorated during the service at high temperatures. Decomposed MC carbides were transformed to new fine carbides, continuous M23C6 carbides were dissolved and new discontinuous carbides along the grain boundaries were regenerated and, finally, the fine γ? particles were reformed. The microstructural recovery resulted in an increase in the hardness and ultimate tensile strength of the alloy. The results also showed that the creep behavior of the alloy at a testing temperature of 850°C could be improved by the heat treatment.  相似文献   

6.
热处理对AZ31B镁合金轧板组织和性能的影响   总被引:1,自引:0,他引:1  
研究了AZ31B镁合金轧板经不同温度、时间退火后的组织和性能及其再结晶行为。结果表明,热轧板材在退火过程中主要发生再结晶;退火后,强度略有下降,但伸长率明显提高;在523K下退火,保温60min,可获得平均晶粒直径为10μm的细晶组织,其抗拉强度为258MPa,断裂伸长率为22.3%,综合性能较好。热轧态板材呈脆性准解理断裂,退火后转变为韧性断裂。  相似文献   

7.
通过固溶处理获得不同初始组织状态的S32750双相不锈钢样品,然后进行厚度压下量80%的冷轧变形和1050℃的退火处理,采用SEM-EBSD和XRD技术研究合金相界与晶界特征以及相组成分布情况,并利用拉伸实验、纳米压痕和双环电化学动电位再活化法(DL-EPR)分析不同初始状态样品的组织对力学性能与耐晶间腐蚀性能的影响规律。结果表明:高温固溶处理的合金样品经冷轧退火后晶粒细小均匀,两相分布接近1∶1,且相界占内界面(晶界+相界)比例较高,同相晶粒团簇程度最低,表现出优异的综合力学性能。合金样品经敏化处理后,σ相易沿α相晶界析出,高温固溶并经轧制退火后的样品中,由于α晶界比例较少且满足K-S取向关系的相界比例较高则又表现出良好的晶间腐蚀抗力。因此,通过适当的工艺来调控合金的相界与晶界分布可以实现材料强度和晶间腐蚀抗力的同步改善。  相似文献   

8.
The aim of the present study is to evaluate the influence of nano-sized carbides upon tensile behavior in UFG medium-carbon steels and to develop a material with improved tensile properties. UFG medium-carbon steels with fine carbides were successfully fabricated by multi-pass caliber rolling at 773 K. Alloying chromium and molybdenum resulted in thinner pearlitic lamellae, which were transformed into finer particles after severe plastic deformation. The UFG steel containing the alloying elements exhibited superior tensile properties, which was attributed to the enhanced strain hardening rate by the imbedded finer particles. Subsequent annealing induced growth of grains and particles, which also recovered elongation at the expense of strength. All UFG steels investigated here showed a yield-point phenomenon due to the decreased hardening rate and lack of mobile dislocations and their sources. The deteriorating effect of particle growth overwhelmed the improving effect of grain growth after annealing of the UFG medium-carbon steel, leading to a reduced strain hardening rate. This resulted in a positive correlation between a grain size and Lüders elongation in the investigated UFG steels.  相似文献   

9.
Susceptibility to intergranular stress corrosion cracking in Ni–16Cr–9Fe–xC alloys in 360°C primary water is reduced with increasing fraction of special grain boundaries, i.e. coincident site lattice boundaries (CSLB) and low angle boundaries, and grain boundary carbides. Intergranular stress corrosion cracking (IGSCC) was investigated using interrupted constant extension rate tensile tests in a primary water environment at 360°C. Thermal–mechanical treatments were used to increase the fraction of special boundaries from approximately 20–25% to between 30 and 40%. In a carbon-doped heat, further heat treating was used to precipitate grain boundary carbides preferentially on high-angle boundaries (HAB). Orientation imaging microscopy was used to determine the relative grain misorientations and scanning electron microscopy (SEM) was used to identify specific grain boundaries after each interruption. After each strain increment, the same regions in each sample were examined for cracking. Results showed that irrespective of the microstructure condition, CSLBs always cracked less than HABs. Results also showed that IGSCC is reduced with increasing solution carbon content, and for the same amount of carbon in solution, the addition of grain boundary carbides reduced IGSCC still further. The best microstructure was the one consisting of an enhanced CSLB fraction and chromium carbides precipitated preferentially on high-angle boundaries.  相似文献   

10.
The development of Cr-depleted zones due to the precipitation of M23C6 at grain boundaries during the ageing of niobium and titanium stabilized austenitic stainless steels (base composition Fe 17 % Cr 12.5% Ni) at 750 C has been studied by STEM/EDX. The chromium composition profiles in high angle grain boundaries were found to be similar both in the vicinity of intergranular M23C6 carbides and at boundary segments between them, i.e. the whole grain boundary area acted as a collector plate to supply the growing M23C6 with chromium. Cr-depleted zones did not develop at coherent twin boundaries in the same way as at ordinary high angle boundaries. No major difference in the width or depth of the depleted zones was observed for the niobium and titanium stabilized alloys except for a weak persistence at 100 h in the niobium containing alloy. The error function solution of Fick's second law for diffusion was found to give a good approximation of the depleted zones in the early stages of ageing.  相似文献   

11.
Transmission electron microscopy and diffraction were used to characterize the microstructural changes which occur in Hastelloy alloy X after long-term ageing (up to 16 000 h) at various temperatures in the range 540 to 870° C. The corresponding effects on mechanical properties were determined. It was found that the alloy age hardens at temperatures in the range of 650 to 870° C. Overageing occurred at 760 and 870° C. Marked reductions in room-temperature tensile elongation were observed after ageing at all the temperatures investigated. However, in no case was the elongation reduced to less than 15 to 30%. Also, the tensile elongation at temperatures corresponding to the respective ageing temperatures was unaffected by 16 000 h ageing at a temperature. It was concluded that the above effects were associated with precipitation of various phases, such as carbides, sigma- and mu-phases, in the matrix and at the grain boundaries.  相似文献   

12.
Abstract

The 12 wt-%Cr secondary hardening steel considered in this work is being evaluated for use in the first wall of fusion reactors. As the service temperature can approach 500°C, the microstructure of greatest interest has been a quenched and tempered structure obtained by tempering at 750°C after air cooling from the austenitizing temperature of 1050°C. This structure is susceptible to grain boundary failure whether internal hydrogen has been introduced by cathodic charging or not. In the uncharged condition failure is ductile, but follows prior austenite grain boundaries. Hydrogen charging results in a severe loss of ductility, and tensile fractures which are 30% brittle intergranular. This susceptibility to grain boundary fracture has been attributed both to phosphorus segregation to these grain boundaries and to a nearly continuous array of grain boundary carbides. This tendency for grain boundary fracture can be eliminated and the embrittlement associated with the introduction of internal hydrogen greatly reduced by swaging and subsequently retempering the quenched, and tempered microstructure. The improved properties of the swaged and retempered conditions are attributed to the effects of swaging on the prior austenite grain boundary structure and the orientation of the grain boundaries with respect to the tensile axis.

MST/376  相似文献   

13.
The CrFeCoNi high-entropy alloy (HEA) exhibits excellent mechanical properties at lower temperatures due to its low stacking-fault energy,however,its medium-and high-temperature strengths are still insufficient.In consideration of the potential diversified applications,more strengthening approaches except for the previously proposed L12 phase hardening deserve further exploration due to its rapid coarsening tendency at high temperatures.Here,we achieved significant high-temperature strengthening of the cast CrFeCoNi HEA by in-situ precipitation of highly thermostable carbides.Alloys with 0.5 at.% and 1 at.% niobium and carbon were prepared by simple casting processes,i.e.drop cast,solute solution and aging.A highly thermostable microstructure was formed,which comprises very coarse grains accompanied with extensive thermostable carbide precipitates embedded,including submicrometer coherent NbC particles in grain interiors and intergranular coherent M23C6 carbides.This high thermostability of microstructure,which is beneficial for the high-temperature loading,is ascribed to the synergy of lacking growth driving force and Zenner pinning effect by the carbides.Tensile properties tested at 673,873 and 1073 K show that the yield strength and ultimate tensile strength are significantly increased by Nb/C doping,along with the elongation escalation at higher temperatures.The strengthening is mainly due to the precipitation hardening of carbide particles.  相似文献   

14.
The gamma prime precipitation strengthening behavior and oxide dispersion strengthening behavior of mechanically alloyed oxide dispersion strengthened (ODS) Ni-base superalloys have been investigated. The most important microstructural feature affecting the elevated temperature strength of ODS alloys was found to be the grain aspect ratio. Grain aspect ratio after zone annealing was sensitively related to the primary grain size in as-extruded Ni-base superalloy. There was a suitable range of primary grain size to obtain a coarse elongated grain structure after zone annealing. The large grain aspect ratio above a critical value of about 20 resulted in an increase in stress-rupture life more than two orders of magnitude at 950°C. The size and distribution of the gamma prime precipitates were dependent on the solution heat treatment conditions. The microstructural parameters on the gamma prime precipitates significantly affected on the stress-rupture property of ODS Ni-base superalloy at the intermediate temperature range.  相似文献   

15.
The influence of the microstructure on the tensile properties and fracture behavior of Hadfield steel at high strain rate were studied. Hadfield steel samples with different mean grain sizes and carbon phases were prepared by rolling at medium temperatures and subsequent annealing. A sample with an average grain size larger than 10 μm, and a small number of carbides shows ductility with local elongation (post uniform elongation) at a high-speed tensile deformation rate of 103 s−1. In addition, the fracture surface changes from brittle to ductile with increasing strain rate. In contrast, a fine-grained sample with carbides undergoes brittle fracture at any strain rate. The grain size dependence is discussed by considering the dynamic strain aging as well as the emission of dislocation from cracks. The accelerated diffusion of carbon due to grain refinement is considered as one of the important reason for brittle fracture in the fine-grained Hadfield steel.  相似文献   

16.
本文研究了4Cr14Ni14W2Mo 钢中碳化物的性态,溶解和析出规律及其对性能的影响。指出,该钢中存在球形、立方体形和六方柱体形等多种形态碳化物,但均为 M_(2(?))C_6。较低温度时效析出的碳化物为立方体形,细小弥散,与基体共格,有明显强化作用。未溶碳化物和较高温度二次固溶后析出的碳化物多为球状和六方柱体形,尺寸较大,与基体不共格,强化作用有限。二次固溶沿晶界择优析出的粗大链状碳化物和时效沿晶析出的网状碳化物易导致沿晶断裂。  相似文献   

17.
Abstract

The microstructures and tensile properties of electrodeposited nanocrystalline Ni (nc-Ni) with a broad grain size distribution after annealing at 150, 200 and 300°C for 500 s were investigated. The as deposited broad grain size distribution nc-Ni sample exhibited a moderate strength σUTS of ~1107 MPa but a markedly enhanced ductility ?TEF of ~10%, compared with electrodeposited nc-Ni with a narrow grain size distribution. Annealing below 200°C increased the strength but caused a considerably reduction in tensile elongation. This behaviour is attributed to the grain boundary relaxation and the increased order of grain boundaries after annealing, which can make the grain boundary activities, such as the grain boundary sliding and grain rotations, more difficult. Further annealing at 300°C decreased both the yield strength and tensile elongation significantly due to significant grain growth.  相似文献   

18.
Precipitation behavior of grain boundary carbides and its influence on mechanical properties and fracture mechanism of the high nitrogen austenitic stainless steel produced by different processing methods were studied. The simulation software Thermo-calc was applied to analyze the effects of element content on precipitation of carbides. The results show that hot-rolled plate has higher strength, but solution-treated one followed by water quenching has excellent combination of strength and ductility (toughness). M23C6 is the main precipitate and deteriorates the toughness of the steel obviously when it precipitates along grain boundaries. In this case, intergranular fracture is the predominant failure mechanism and the fracture surface is characterized by the shape of rock candy. The toughness at −40 °C is decreased by 53% when small amount of carbides precipitates during sand cooling process after solution treatment. The simulation results exhibit that with the decrease of C content, both the precipitation quantity and precipitation temperature of M23C6 decrease. Cr and N have no influence on precipitation quantity of M23C6, but the precipitation temperature will increase with the increase of Cr and the decrease of N.  相似文献   

19.
Abstract

This investigation has examined intergranular fracture during heat treatment and deformation of an Al–Li–Cu–Mg alloy and of an Al–Li–Cu alloy. When solution treatment of the Al–Li–Cu–Mg alloy was initiated by rapid heating to temperatures ≥ 545°C, non-equilibrium eutectic melting of a grain boundary precipitate phase occurred and the liquid spread along grain boundaries as a thin film. On quenching, intergranular cracks were observed at grain boundaries into which a liquid film had penetrated during solution treatment. For less rapid heating rates, non-equilibrium eutectic melting did not occur and no intergranular cracks were observed after quenching. No evidence of non-equilibrium eutectic melting was observed in the Al–Li–Cu alloy irrespective of the rate of heating to 550°C. During tensile testing of as quenched and quenched and aged specimens of the two alloys, intergranular fracture occurred in most specimens, whether or not non-equilibrium eutectic melting had taken place during solution treatment, indicating that at least one additional mechanism of intergranular fracture was initiated by deformation.

MST/947  相似文献   

20.
Effects of heat treatments on room temperature mechanical properties and stress-rupture properties of Rene 80 have been investigated. The microstructures were analyzed by optical microscope and scanning electron microscope after each step of heat treatments. With the decrease of aging temperature, the average size of γ′ phase decreases, but the volume fraction of γ′ phase increases. The lower aging temperature suppresses the growing of the coarse γ′ particles, but facilitates the growth of the fine γ′ particles. After the optimum heat treatment, the ultimate tensile strength and yield strength are respectively higher than 1040 MPa and 950 MPa, the stress-rupture life at 871 °C/310 MPa is higher than 170 h with excellent ductility. The improved tensile strength and stress-rupture life are primarily due to the increased volume fraction of γ′ phase. The borides precipitate at grain boundaries at about 913 °C. The primary MC is found to decompose into M6C at about 873 °C and M23C6 at 840–873 °C at grain boundaries. The precipitate of the carbides may partly contribute to the improved mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号