首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
目的确定适当的负偏压,提高多弧离子镀氮化钛薄膜的综合性能。方法采用不同的负偏压,在4Cr13不锈钢表面制备Ti N薄膜,探讨偏压对薄膜表面质量、结构、硬度、结合力和摩擦系数的影响。结果负偏压对薄膜表面质量的影响较大:负偏压为0 V时,Ti N薄膜表面凹凸不平,液滴较多;随着负偏压升高,薄膜表面变得光滑,液滴减少并变小,薄膜致密性也得到提高。在不同负偏压下,Ti N薄膜均呈现出在(111)晶面的择优取向,但随着负偏压的增大,这种择优取向逐渐减弱,当负偏压达到400 V时,薄膜在(220)晶面的峰值逐渐增强。随着负偏压从0增至400 V,薄膜的硬度、结合力和耐磨性均先提高,后降低。当负偏压为300 V时,薄膜的硬度和结合力达到最大,分别为2650HV和58 N;摩擦系数和磨损量最小,分别为0.48和0.1065 mm3。结论施加适当的负偏压可以提高薄膜的硬度、结合力、耐磨性等性能,当负偏压为300 V时,薄膜的各项性能达到最佳。  相似文献   

2.
脉冲偏压对复合离子镀(Ti,Cu)N 薄膜结构与性能的影响   总被引:1,自引:1,他引:0  
目的 (Ti,Cu)N薄膜是一种新型的硬质涂层材料,关于其结构和性能的研究报道还较少。研究脉冲偏压对(Ti,Cu)N薄膜结构与性能的影响规律,以丰富该研究领域的成果。方法将多弧离子镀和磁控溅射离子镀相结合构成复合离子镀技术,采用该技术在不同脉冲偏压下于高速钢基体表面制备(Ti,Cu)N薄膜。分析薄膜的微观结构,测定沉积速率及薄膜显微硬度,通过摩擦磨损实验测定薄膜的摩擦系数。结果在不同偏压下获得的(Ti,Cu)N薄膜均呈晶态,具有(200)晶面择优取向,当脉冲偏压为-300 V时,薄膜的择优程度最明显。随着脉冲偏压的增加,薄膜表面大颗粒数量减少且尺寸变小,表面质量提高;沉积速率呈现先增大、后减小的趋势,在脉冲偏压为-400 V时最大,达到25.04 nm/min;薄膜硬度也呈现先增大、后减小的趋势,在脉冲偏压为-300 V时达到最大值1571.4HV。结论脉冲偏压对复合离子镀(Ti,Cu)N薄膜的表面形貌、择优取向、沉积速率和硬度均有影响。  相似文献   

3.
负偏压对电弧离子镀复合TiAlN 薄膜的影响   总被引:2,自引:2,他引:0  
采用电弧离子镀技术,以W18Cr4V高速钢为基体,调整基体负偏压,制得多个复合TiAlN薄膜试样,研究了基体负偏压对薄膜微观组织形貌、物相组成、晶格位向、硬度、厚度和沉积速率的影响。结果表明,过高或过低的负偏压会使得膜层表面不平整,显微硬度下降。当负偏压为200 V时,膜层的沉积速率最大;负偏压为150 V时,有利于薄膜(111)晶面的择优取向生长,且TiAlN膜的硬度最高。  相似文献   

4.
应用多弧离子镀对4Cr13不锈钢基体沉积TiN薄膜,用WS-2005型附着力自动划痕仪测试薄膜的结合力,研究弧电流、沉积温度和偏压对膜基结合强度的影响。结果表明:随着靶电流、沉积温度和偏压的增大,TiN薄膜与基体的结合力先增大后减小。在其它参数不变时,当弧电流为85、95、105、120 A时,薄膜结合力分别为42、50、75、63N;当沉积温度为150、200、250、300℃时,薄膜的结合力分别为45、45、48、40 N;当偏压为0、200、300、400 V时,薄膜的结合力分别为38、42、58、42 N。本试验膜基结合强度最佳工艺参数为:弧电流105A、沉积温度250℃、偏压300V。  相似文献   

5.
以气压、弧电流和偏压为影响因素设计正交试验,采用电弧离子镀技术在6Cr13Mo马氏体不锈钢表面沉积Cr N薄膜。利用扫描电镜、显微硬度计、划痕仪对Cr N薄膜的厚度、硬度、结合力进行检测,研究薄膜性能并优化其制备工艺。结果表明:靶电流对薄膜厚度及结合力影响最大,随着电流升高,膜层厚度急剧增大,而结合力逐渐降低;对薄膜硬度影响最大的为负偏压,随着偏压升高,膜层硬度先升高后降低。综合考虑Cr N薄膜的表面质量、硬度、结合力,得到最佳制备工艺为气压1.4 Pa、靶电流100 A、偏压-100 V。  相似文献   

6.
目的通过调节偏压,改善无氢DLC薄膜的微观结构,提高其力学性能和减摩抗磨性能。方法采用离子束辅助增强磁控溅射系统,沉积不同偏压工艺的DLC薄膜。采用原子力显微镜(AFM)观察薄膜表面形貌,采用拉曼光谱仪对薄膜的微观结构进行分析,采用纳米压痕仪测试薄膜硬度及弹性模量,采用表面轮廓仪测定薄膜沉积前/后基体曲率变化,并计算薄膜的残余应力,采用大载荷划痕仪分析薄膜与不锈钢基体的结合力,采用TRB球-盘摩擦磨损试验机评价薄膜的摩擦学性能,采用白光共聚焦显微镜测量薄膜磨痕轮廓,并计算薄膜的磨损率。结果偏压对DLC薄膜表面形貌、微观结构、力学性能、摩擦学性能都有不同程度的影响。偏压升高导致碳离子能量升高,表面粗糙度呈现先减小后增加的趋势,-400V的薄膜表面具有最小的表面粗糙度且C─C sp^3键含量最多,这也导致了此偏压下薄膜的硬度最大。薄膜的结合性能与碳离子能量大小呈正相关,-800 V时具有3.98 N的最优结合性能。不同偏压工艺制备的薄膜摩擦系数随湿度的增加,均呈现减小的趋势,偏压为-400V时,薄膜在不同湿度环境中均显示出最优的摩擦学性能。结论偏压为-400 V时,DLC薄膜综合性能最优,其表面粗糙度、硬度、结合力和摩擦系数分别为2.5 nm、17.1 GPa、2.81 N和0.11。  相似文献   

7.
负偏压对多弧离子镀TiN薄膜的影响   总被引:4,自引:4,他引:0  
袁琳  高原  张维  王成磊  马志康  蔡航伟 《表面技术》2012,41(1):20-22,26
采用不同偏压,在201不锈钢表面进行多弧离子镀TiN薄膜,研究了偏压对薄膜表面形貌、硬度、相结构及耐蚀性的影响.研究表明:薄膜表面存在着许多液滴颗粒,随着偏压的增加,液滴减少,但过大的偏压会使表面出现凹坑;薄膜的显微硬度随偏压的升高先增大后减小,偏压为-200 V时的本征硬度为2 195HV;在3.5%的NaCl溶液中...  相似文献   

8.
采用中频反应磁控溅射技术,以高纯Ti(99.99%)为靶材,以高纯氮气(99.99%)为反应气体,在铝合金基片上沉积Ti/TiN复合纳米膜层。通过XRD、SEM、EDS等分析Ti/TiN复合纳米膜层微观组织和物相结构,研究基片负偏压对Ti/TiN复合纳米薄膜择优取向生长的影响。研究表明,将片加上-150 V负偏压时,Ti/TiN薄膜优先沿(111)面生长;将基片加上-200 V负偏压时,Ti/TiN薄膜优先沿(220)面生长;将基片加上-350 V负偏压时,Ti/TiN薄膜优先沿(200)面生长。继续增大基片负偏压时,由于薄膜中Ar离子浓度大幅增长,高能离子长时间轰击破坏晶粒取向性,使薄膜呈无择优取向。  相似文献   

9.
采用电弧离子镀技术制备TiN薄膜,研究了不同氮分压以及基体偏压下薄膜的表面质量、微结构、相组成、硬度以及结合力,优化工艺参数并制备TiN/TiC多层膜,比较了多层膜以及TiC单层膜的硬度以及摩擦性能的差异。结果表明,经过对不同工艺参数下薄膜的形貌结构以及性能比较,确定采用0.6 Pa氮分压以及-100 V基体偏压作为TiN优化工艺参数,在该工艺基础上制备的TiN/TiC多层膜与单层TiC薄膜相比具有更高的硬度以及更低的摩擦系数。  相似文献   

10.
采用直流非平衡磁控溅射方法在M42高速钢表面沉积Ti/TiN/TiAlSiN多层薄膜,研究基底偏压对TiAlSiN的晶体结构、微观组织、力学及摩擦学性能的影响。结果表明:基体负偏压从40 V增加到80 V,TiAlSiN由致密的粗大柱状晶向致密纤维状细晶过渡、晶粒宽度由180 nm减小至60 nm;当负偏压大于60 V时,TiAlSiN层由fcc TiN+fcc AlN双相结构转变为fcc TiAlN单相结构;涂层硬度和弹性模量随偏压增大呈现上升趋势,当负偏压为80 V时,涂层的硬度和弹性模量分别为34.1 GPa和378 GPa;涂层的摩擦学性能随偏压的增大而先增强后降低,当负偏压为40 V时,涂层磨损率为5.0×10~(-6)mm~3/Nm,当负偏压为50 V时,涂层则降低至5.0×10~(-6)mm~3/Nm,为最低值,随着负偏压增加到80 V时,磨损率较高,约9.0×10~(-6)mm~3/Nm。  相似文献   

11.
目的分析不同负偏压下Ti N涂层表面的大颗粒数量、尺寸和面积以及像素分布,为多弧离子镀技术的工业化应用提供基础数据。方法采用多弧离子镀膜技术,以脉冲负偏压为变量,在硬质合金表面沉积Ti N涂层。用扫描电子显微镜对涂层表面形貌进行表征,并利用Image J软件对表面大颗粒的数量和尺寸进行分析,对像素分布进行统计。结果随着负偏压的增加,涂层表面大颗粒的数量先增多,后减少。负偏压为100 V时,大颗粒数量最多,为1364;负偏压为300 V时,大颗粒数量最少,为750。此外随着负偏压的增加,大颗粒所占涂层面积比逐渐减小。未加负偏压时,涂层表面大颗粒所占面积比最大,为6.9%,且此时涂层的力学性能最差;采用400 V负偏压时,涂层表面大颗粒所占面积比最小,为3.3%,且此时涂层的力学性能最好。负偏压为300 V时,亮、暗像素点的个数最多,为8302;负偏压为400 V时,亮、暗像素点的个数最少,为4067。结论当占空比为30%,沉积时间为1 h,负偏压为400 V时,获得的涂层力学性能最好,颗粒数量少且尺寸小。  相似文献   

12.
沉积偏压对涂层的结构与性能具有重要影响,为研究其对AlCrTiN纳米复合涂层成分、组织结构、力学与抗高温氧化性能的影响规律,采用磁控溅射技术,改变沉积偏压(-30、-60、-90、-120 V)制备四种AlCrTiN纳米复合涂层。利用X射线衍射仪、扫描电子显微镜、纳米压痕仪等仪器表征涂层的组织结构、成分、力学性能和抗高温氧化性能。研究结果表明:不同偏压下制备的AlCrTiN纳米复合涂层均为NaCl型fcc-(Al,Cr,Ti)N相结构。随着沉积偏压增大,涂层由沿(111)晶面择优生长转变为无明显的择优生长取向,晶粒尺寸降低,残余应力和硬度增大。偏压为-90 V与-120 V时,涂层表面更加致密,具有更高的硬度和弹性模量。在800℃与900℃氧化1 h后,所有涂层表面均生成一层连续致密的Al2O3膜。随着沉积偏压增加,氧化膜厚度逐渐降低,表明抗高温氧化性能逐渐增强,这是因为高偏压下涂层组织更致密,且晶粒更细小。研究成果对AlCrTiN纳米复合涂层的综合性能提升与工程化应用具有一定指导意义。  相似文献   

13.
本文采用轴向磁场增强电弧离子镀在高速钢基体上沉积了TiN/Cu纳米复合薄膜,研究了基体脉冲偏压幅值对薄膜成分、结构、力学性能及耐磨性能的影响。结果表明,薄膜中铜含量随着脉冲偏压幅值的增加先增加而后降低,在一个较低的范围内(1.3-2.1at.%)。X射线衍射结果表明所有的薄膜均出现TiN相,并未观察到Cu相。薄膜的择优取向随着脉冲偏压幅值的增加而改变。薄膜的最高硬度为36GPa,是在脉冲偏压幅值为-200V时得到的,对应了1.6at.%的Cu含量。与纯的TiN薄膜相比,Cu的添加明显增强了薄膜的耐磨性能。  相似文献   

14.
负偏压对低温沉积TiN薄膜表面性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
白秀琴  李健 《中国表面工程》2005,18(5):20-23,27
研究了在低温磁控溅射沉积TiN薄膜过程中,负偏压对基体温度、薄膜表面性能、薄膜与基体界面结合强度以及摩擦学性能的影响.研究结果表明,加负偏压条件下,明显提高基体温度,有益于晶粒细化,提高硬度,改善色泽,提高TiN/基体的界面结合强度,但会引起表面轻微的粗糙化;摩擦学试验表明,负偏压对低温磁控溅射TiN薄膜及其摩擦副的摩擦磨损性能的影响较明显.  相似文献   

15.
目的研究脉冲偏压占空比对TiN/TiAlN多层薄膜微观结构和硬度的影响规律。方法利用脉冲偏压电弧离子镀的方法,改变脉冲偏压占空比,在M2高速钢表面制备5种TiN/TiAlN多层薄膜,对比研究了薄膜的微观结构、元素成分、相结构和硬度的变化规律。结果 TiN/TiAlN多层薄膜表面出现了电弧离子镀制备薄膜的典型生长形貌,随着脉冲偏压占空比的增加,薄膜表面的大颗粒数目明显减少。此外,脉冲偏压占空比的增加还引起多层薄膜中Al/Ti原子比的降低。结论 TiN/TiAlN多层薄膜主要以(111)晶面择优取向生长,此外还含有(311),(222)和(200)晶相结构。5种多层薄膜的纳米硬度均在33GPa以上,当脉冲偏压占空比为20%时,可实现超硬薄膜的制备。  相似文献   

16.
The effect of different bias voltages on microstructure of Al coatings on uranium was investigated by using scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray stress analyzer, respectively. The results indicate that the microstructure is influenced strongly by bias voltage. At low bias voltages, especially at -100 V, the structure of Al coatings is more densely packed than that at high bias voltages of - 300 V and - 400 V,where the structure looks like open dentritic. On the whole, the peak (111) orientation is predominant with the increase of bias voltage, but at -400 V, the diffractive intensity of main peaks (111) and (200) is close to the standard reference. The residual stress on Al coatings surface is small, which has a change from tensile to compressive stress with the increase of bias voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号