首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对"混凝+活性炭吸附"联用工艺处理煤化工高含盐废水进行了试验研究,考察了相关工艺参数对COD去除效果的影响;选用聚合硫酸铁(PFS)为混凝剂,当PFS投加量为0.5 g/L、聚丙烯酰胺助凝剂投加量10 mg/L、废水初始p H为8.69时,COD去除率达到29.0%;选用柱状活性炭为吸附剂,当活性炭投加量60 g/L、废水初始p H为7.40、吸附时间120 min时,COD去除率为70.1%,出水COD小于80 mg/L;结果表明,该工艺可以有效去除煤化工高含盐废水COD。  相似文献   

2.
为探究煤粉吸附剂对选矿废水中有机污染物的吸附过程,利用煤粉作为吸附剂用于选矿废水中乙硫氮污染物的吸附。研究煤粉吸附剂自身物理化学性质特点,并通过配制乙硫氮污染物模拟废水,研究煤粉投加量、吸附时间等吸附条件对吸附过程的影响,重点研究煤粉吸附剂吸附乙硫氮污染物的吸附等温线、吸附速率控制过程等。结果表明煤粉吸附剂表面结构复杂,具有丰富的孔隙结构和含氧官能团,是一种天然吸附剂。煤粉投加量和吸附时间是影响吸附效果的重要因素,随着煤粉投加量增加,溶液中乙硫氮去除率先增加后趋于稳定,吸附量不断减少;随着吸附时间延长,乙硫氮去除率和吸附量开始时增加比较迅速,吸附时间达到30 min后,去除率和吸附量均趋于稳定。乙硫氮溶液初始浓度50 mg/L,煤粉投加量5 g/L,振荡吸附时间30 min条件下,乙硫氮去除率达86.53%,吸附量为8.65 mg/g。利用Langmuir和Freundlich等温吸附模型拟合煤粉对乙硫氮的吸附行为,Freundlich等温吸附模型更加符合该吸附过程,说明其吸附行为是以表层为主的多层吸附。利用准一级动力学方程、准二级动力学方程和颗粒内部扩散模型进行吸附动力学研究,结果表明该吸附过程更加符合准二级动力学模型,吸附速率的控制步骤同时包含外部液膜扩散、表面扩散以及颗粒内部扩散过程,但以表面扩散为主导作用。  相似文献   

3.
《应用化工》2022,(5):1183-1187
考察接触时间、邻苯二甲酸初始浓度、溶液初始pH等对活性炭的吸附处理邻苯二甲酸废水效果的影响。结果表明,在PA初始浓度为500 mg/L,溶液pH为1,AC 100 mg/L,吸附200 min时,PA在活性炭上的吸附量为269.9 mg/g,吸附过程符合拟一级动力学。模拟移动床吸附COD 5 000~6 000 mg/L的模拟邻苯二甲酸废水,邻苯二甲酸去除率达98%以上,出口废水COD值在100 mg/L以下。活性炭经5次循环后仍较稳定,再生率达95%以上,再生液将废水中的邻苯二甲酸浓缩至8倍,为邻苯二甲酸的回收提供基础。  相似文献   

4.
《应用化工》2022,(5):876-881
以煤矸石、石灰石和氯化铝为原料,制备呈碱性的复合吸附剂和呈中性的复合吸附剂,处理含铅(Ⅱ)废水,结果表明,碱性吸附剂的最佳吸附条件为投加量0.5 g,吸附时间60 min,p H为1,反应温度为25℃时,此时吸附量为7.62 mg/g,去除率为96.68%;中性吸附剂的最佳吸附条件为投加量0.5 g,吸附时间80 min,p H为1,反应温度25℃,此时吸附量达到7.19 mg/g,去除率为85.40%。碱性复合吸附剂吸附含铅(Ⅱ)废水能较好的与准二级动力学拟合,中性复合吸附剂吸附含铅(Ⅱ)废水能较好的与准一级动力学拟合。采用Freundlich方程描述碱性复合吸附剂吸附低浓度和高浓度含铅(Ⅱ)废水,用Langmuir方程描述中性吸附剂吸附低浓度含铅(Ⅱ)废水,用Temkin方程描述中性吸附剂吸附高浓度含铅(Ⅱ)废水。  相似文献   

5.
《应用化工》2016,(5):876-881
以煤矸石、石灰石和氯化铝为原料,制备呈碱性的复合吸附剂和呈中性的复合吸附剂,处理含铅(Ⅱ)废水,结果表明,碱性吸附剂的最佳吸附条件为投加量0.5 g,吸附时间60 min,p H为1,反应温度为25℃时,此时吸附量为7.62 mg/g,去除率为96.68%;中性吸附剂的最佳吸附条件为投加量0.5 g,吸附时间80 min,p H为1,反应温度25℃,此时吸附量达到7.19 mg/g,去除率为85.40%。碱性复合吸附剂吸附含铅(Ⅱ)废水能较好的与准二级动力学拟合,中性复合吸附剂吸附含铅(Ⅱ)废水能较好的与准一级动力学拟合。采用Freundlich方程描述碱性复合吸附剂吸附低浓度和高浓度含铅(Ⅱ)废水,用Langmuir方程描述中性吸附剂吸附低浓度含铅(Ⅱ)废水,用Temkin方程描述中性吸附剂吸附高浓度含铅(Ⅱ)废水。  相似文献   

6.
王颖  陈虎  吝学超 《陕西化工》2012,(1):141-143
研究了活性炭对机械加工中含油废水处理工艺。探讨了在不同吸附条件下(吸附剂量、时间、pH)的吸附效果。结果表明,活性炭吸附的最佳工艺条件是:含油120 mg/L的10 mL废水中,加入活性炭质量0.3 g,加热搅拌时间60 min,pH值为8。在最佳条件下,含油废水在活性炭吸附后的COD为160 mg/L。  相似文献   

7.
用高炉渣吸附废水中的Cu(2+),探讨了反应时间、吸附剂投加量、吸附温度和废水pH等因素对废水中Cu(2+),探讨了反应时间、吸附剂投加量、吸附温度和废水pH等因素对废水中Cu(2+)去除率的影响,并从动力学和等温吸附模型探讨了吸附作用机理。结果表明,当吸附温度为室温(25℃)、吸附剂投加量为1.2 g、反应时间为60 min、废水初始pH为7时,Cu(2+)去除率的影响,并从动力学和等温吸附模型探讨了吸附作用机理。结果表明,当吸附温度为室温(25℃)、吸附剂投加量为1.2 g、反应时间为60 min、废水初始pH为7时,Cu(2+)去除率达95.18%;高炉渣吸附剂对废水中Cu(2+)去除率达95.18%;高炉渣吸附剂对废水中Cu(2+)的吸附过程符合吸附伪二级动力学方程和Langmuir吸附等温模型,这表明此吸附过程主要是单分子层吸附,并且吸附是容易发生的。  相似文献   

8.
《应用化工》2022,(9):1742-1746
采用柚子皮作为生物吸附剂,在对模拟的放射性废水的单种金属元素溶液吸附研究中,柚子皮表现出对镧锕系金属离子的高效吸附;在对多种金属元素的混合溶液吸附研究中,柚子皮表现出对钍离子的高效选择性吸附。结果表明,Th(4+)的质量浓度100 mg/L、初始pH 4、吸附剂浓度3.5 g/L、粒径150(4+)的质量浓度100 mg/L、初始pH 4、吸附剂浓度3.5 g/L、粒径150200目、吸附时间120 min时,柚子皮吸附剂对Th200目、吸附时间120 min时,柚子皮吸附剂对Th(4+)的去除率可达94.87%,最大吸附量43.01 mg/g。柚子皮对Th(4+)的去除率可达94.87%,最大吸附量43.01 mg/g。柚子皮对Th(4+)的吸附行为符合Langmuir等温模型,吸附属于单分子层吸附。柚子皮对钍(IV)的吸附行为符合拟二级动力学模型。  相似文献   

9.
用磷酸改性核桃壳吸附去除模拟废水中的氨氮。探讨了改性核桃壳的粒径、溶液pH、吸附时间、吸附温度、吸附剂投加量、氨氮的初始浓度等对吸附NH_3-N效果的影响。结果表明,吸附处理100 mL浓度50 mg/L的氨氮模拟水样的最佳吸附条件:温度25℃,0.6~1.0 mm粒径的磷酸改性核桃壳1.0 g、介质pH 8.0,吸附时间60 min。在此条件下,氨氮的去除率可达70%左右。Langmuir、Freundlich等温吸附方程和拟二阶动力学模型能很好地描述吸附过程。  相似文献   

10.
《应用化工》2022,(2):282-286
利用CK煤基吸附剂与焦煤、长焰煤、肥煤3种吸附材料处理焦化厂蒸氨废水与二沉池出水,探究吸附剂投加量、吸附时间、pH值对COD去除率的影响。结果表明,CK型煤基吸附剂对蒸氨废水与二沉池出水的处理效果明显优于其他3种吸附材料。在pH=2,吸附时间30 min的条件下,10 g/L的投加量蒸氨废水COD去除率为59.75%,2 g/L的投加量,二沉池出水的COD去除率为72.39%。  相似文献   

11.
用磷酸改性核桃壳吸附去除模拟废水中的氨氮。探讨了改性核桃壳的粒径、溶液pH、吸附时间、吸附温度、吸附剂投加量、氨氮的初始浓度等对吸附NH_3-N效果的影响。结果表明,吸附处理100 mL浓度50 mg/L的氨氮模拟水样的最佳吸附条件:温度25℃,0.61.0 mm粒径的磷酸改性核桃壳1.0 g、介质pH 8.0,吸附时间60 min。在此条件下,氨氮的去除率可达70%左右。Langmuir、Freundlich等温吸附方程和拟二阶动力学模型能很好地描述吸附过程。  相似文献   

12.
以片沸石为吸附剂处理氨氮废水,研究了吸附剂粒径、反应时间、废水pH、氨氮初始含量、沸石投加量对吸附的影响,分析了片沸石的吸附动力学和热力学特征。结果表明,在298K下,当投加沸石质量为8g、粒径为74μm、废水用量为100 mL,初始氨氮质量浓度为50 mg/L、pH为7、吸附时间3 h时,废水中氨氮的去除率可达到70.83%,天然片沸石吸附氨氮符合准2级动力学方程。在温度为298~318 K时,吸附等温线更好地符合Freundlich方程;热力学计算发现ΔH0、ΔG0、ΔS0,表明氨氮在片沸石上的吸附是自发吸热过程,以物理吸附为主。  相似文献   

13.
何红艳  邹思佳 《化学试剂》2020,42(10):1148-1153
以菠萝叶子为原材料,磷酸作活化剂,通过热处理合成介孔生物炭,再利用十六烷基三甲基溴化铵进行改性,采用扫描电镜、比表面积测试和傅里叶转换红外光谱表征改性前后材料的结构,研究其作为吸附剂处理染料废水的性能。室温下,藏红T的初始浓度150 mg/L,pH 11,吸附时间50 min,未改性吸附剂投加量0.6 g/L,去除率和吸附量分别达到96.33%和234.1 mg/g。胭脂红的吸附实验中,当初始浓度100 mg/L,pH 2,吸附时间50 min,改性吸附剂投加量0.5 g/L,去除率95.17%,吸附量为194.8 mg/g。分析数据表明,改性前后材料吸附染料的过程符合拟二级动力学模型和Langmuir等温线模型。  相似文献   

14.
《应用化工》2022,(5):1211-1217
采用城市污水处理厂脱水污泥和玉米芯复合碳化制备吸附剂,利用BET、SEM和FTIR对吸附剂进行表征,通过吸附因素影响实验、解吸实验、选择性吸附实验、吸附动力学和等温模型拟合考察其对废水中Pb(2+)的吸附特性,并对实际废水进行了吸附研究。结果表明,污泥复合玉米芯碳化吸附剂比表面积为991.20 m(2+)的吸附特性,并对实际废水进行了吸附研究。结果表明,污泥复合玉米芯碳化吸附剂比表面积为991.20 m2/g,以中孔为主,其对模拟废水中Pb2/g,以中孔为主,其对模拟废水中Pb(2+)的较佳吸附条件:初始pH、吸附温度和吸附时间分别为4.0~5.5、25℃和4.0 h,当Pb(2+)的较佳吸附条件:初始pH、吸附温度和吸附时间分别为4.0~5.5、25℃和4.0 h,当Pb(2+)初始浓度为10 mg/L、较佳吸附剂投加量为6 g/L时,Pb(2+)初始浓度为10 mg/L、较佳吸附剂投加量为6 g/L时,Pb(2+)去除率为90.10%,吸附量为1.50 mg/g。经0.5 mol/L的HCl解吸6次,吸附剂对Pb(2+)去除率为90.10%,吸附量为1.50 mg/g。经0.5 mol/L的HCl解吸6次,吸附剂对Pb(2+)的去除率仍达92%以上。污泥复合玉米芯碳化吸附剂对Pb(2+)的去除率仍达92%以上。污泥复合玉米芯碳化吸附剂对Pb(2+)的吸附符合准二级动力学模型(R(2+)的吸附符合准二级动力学模型(R2为0.997 1~0.999 5)和Freundlich吸附等温模型(R2为0.997 1~0.999 5)和Freundlich吸附等温模型(R2为0.992 0~0.996 6),为非均匀化学吸附,羟基和羧基起主要作用。Cu2为0.992 0~0.996 6),为非均匀化学吸附,羟基和羧基起主要作用。Cu(2+)、Cd(2+)、Cd(2+)和Ni(2+)和Ni(2+)对Pb(2+)对Pb(2+)产生竞争吸附作用,选择性吸附顺序为:Cu(2+)产生竞争吸附作用,选择性吸附顺序为:Cu(2+)>Pb(2+)>Pb(2+)>Ni(2+)>Ni(2+)>Cd(2+)>Cd(2+)。实际废水(COD、Pb(2+)。实际废水(COD、Pb(2+)和Cu(2+)和Cu(2+)初始浓度分别为563,23.20,29.86 mg/L)处理结果表明,当吸附剂投加量为32 g/L时,Pb(2+)初始浓度分别为563,23.20,29.86 mg/L)处理结果表明,当吸附剂投加量为32 g/L时,Pb(2+)去除率达96.10%,剩余浓度为0.90 mg/L,达到《污水综合排放标准》(GB 8978—1996)第一类污染物最高允许排放浓度限值,此时Cu(2+)去除率达96.10%,剩余浓度为0.90 mg/L,达到《污水综合排放标准》(GB 8978—1996)第一类污染物最高允许排放浓度限值,此时Cu(2+)几乎被完全吸附。  相似文献   

15.
以生物吸附剂花生壳和甘蔗渣作为吸附剂,讨论了原料粒径大小、吸附时间、温度、初始溶液p H值、加入量、振荡速率对吸附效率的影响。结果表明最佳吸附条件为:甘蔗渣吸附剂过80目筛,投加量为0. 8 g,吸附溶液初始p H为2. 0,35℃时以200 rpm的速率振荡300 min,对实验室废水中Cr(Ⅵ)的吸附率可达95. 10%;花生壳吸附剂过120目筛,投加量1. 0 g,35℃时以150 rpm的速率振荡180 min,对实验室废水中Cr(Ⅵ)的吸附去除率达到97. 52%。  相似文献   

16.
在微波辐射条件下,用ZnCl2改性小麦秸秆制备吸附剂处理含Cd2+废水,研究了吸附剂投加量、初始pH、吸附时间、温度对水溶液中Cd2+的去除率与吸附量的影响;通过动力学、热力学模型拟合、扫描电镜(SEM)和红外光谱(FTIR)分析,探讨其吸附机理。结果表明,改性小麦秸秆是一种具有潜在利用价值的Cd2+吸附剂,在投加量为4 g/L、初始pH为6,温度为298 K条件下处理100 mg/L的Cd2+废水,去除率达92.11%,吸附量为22.33 mg/g,吸附达到平衡的时间约为120 min;吸附动力学可以用准2级动力学方程描述;等温吸附模型符合Langmuir方程,293、303、313K温度条件下的饱和吸附量分别可达61.31、63.74和66.83 mg/g;结合SEM和FTIR谱图分析推断,改性小麦秸秆吸附Cd2+主要发生在吸附剂表层,吸附过程以化学吸附为主。  相似文献   

17.
以NaOH改性芝麻杆做吸附剂,研究其对活性黄M-3RE的吸附性能。考察了吸附剂粒径、溶液初始pH、吸附时间、搅拌速度及吸附剂用量的影响。结果表明,在pH2~3,吸附剂粒径为80到100目,搅拌速度200r/min、吸附剂用量为16g/L的条件下,改性芝麻杆对80mg/L的活性黄M-3RE的去除率可达到85%,其吸附平衡时间约为30min。  相似文献   

18.
以胶乳生产厂脱水污泥为原料、1.40mol/L的NaHCO_3作膨胀剂,60℃浸渍并超声处理30min,污泥烘干后再经高温炭化制备吸附剂,将其用于吸附阳离子兰X-GRRL染料溶液,考察炭化温度、炭化时间、吸附剂粒径、吸附剂投加量、吸附时间及溶液pH对吸附效果的影响,并对其吸附动力学和吸附等温线类型进行了探讨。结果表明:污泥在炭化温度700℃、炭化时间120min的条件下,制备的吸附剂(粒径0.75mm)的比表面积为118.95m~2/g,孔隙结构较为发达,对染料溶液吸附效果最佳;在振荡频率150r/min、吸附温度为25℃±0.10℃、初始染料质量浓度为250mg/L、吸附剂投加量为1.20g/L、溶液pH为5.47、吸附时间为300min时,溶液脱色率可达98.30%,染料吸附量为204.80mg/g;其吸附动力学可用准二级动力学方程进行描述;符合Langmuir型吸附等温线,属于单分子层吸附;吸附剂浸出液及吸附处理后的染料溶液的COD值分别为4.00mg/L和20.00mg/L,不会对水体造成二次污染。  相似文献   

19.
文章利用泉州市污水处理厂生化池污泥为主要原料制备污泥活性炭,研究其对含酚废水的吸附效果,考察了污泥活性炭添加量、振荡时间、反应温度、p H、初始浓度对含酚废水去除率的影响。结果表明,污泥活性炭的碘值为530 mg/g,吸附含酚废水的最佳条件为:污泥活性炭添加量为15 g/L、吸附时间为70 min、p H为6、温度为25℃、初始浓度为10 mg/L对苯酚溶液去除率最佳可达97.9%,符合Frenndlich吸附模型。  相似文献   

20.
采用兰炭基活性炭(BAC)和高分子树脂静态吸附焦化废水,研究投加量、树脂种类、pH、吸附时间等因素对COD去除率的影响,探讨BAC吸附过程的吸附等温线和吸附特征。结果表明,在不调节pH条件下,经过7.0 g BAC吸附90 min和1.5 g D301R树脂吸附30 min后,焦化废水COD可降至167 mg/L,去除率达94.14%。Langmuir和Freundlich两种吸附模型对吸附过程都有较好的拟合效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号