共查询到20条相似文献,搜索用时 15 毫秒
1.
在运行过程中,高温阀门同时经历高温高压、长时稳定载荷和短时交变载荷的作用,蠕变损伤和疲劳损伤同时存在,但目前针对高温阀门多工况蠕变损伤、疲劳损伤和蠕变疲劳耦合的研究还较少。为此,建立了钠快冷堆调节阀阀体有限元模型,对蠕变、疲劳以及蠕变疲劳损伤进行了计算与安全性评估。首先,采用ANSYS有限元分析软件,结合多工况稳态以及瞬态热力耦合的方法,对高温核电阀门的阀体进行了数值模拟计算;然后,使用蠕变本构方程对高温阀门阀体进行了蠕变分析;最后,以ASME规范的线性累积损伤理论为判据,对高温调节阀阀体进行了蠕变、疲劳以及蠕变疲劳交互损伤安全性评定。研究结果表明:在13种瞬态工况以及4种稳态工况产生的热力耦合作用下,阀体出口处均产生了较高的应力,经分析得出扭矩是造成阀体出口处应力高的主要因素;通过数值计算得出了循环变载荷造成阀体产生的疲劳损伤为0.001 8,而长时间处于高温环境中的蠕变损伤为0.1,由此得出了高温阀门受到蠕变破坏的可能性高于疲劳破坏;该研究结果可为第四代高温核电阀门的分析与设计提供理论基础和技术方案。 相似文献
2.
3.
基于有限元分析的管板结构优化设计 总被引:17,自引:0,他引:17
在有限元分析技术的基础上,结合优化设计技术,利用有限元分析软件完成了超规范管板系统的结构优化设计,并阐述了管板优化模型的建立,整个管板系统在优化后的重量与采用手工计算相比减少了27.64%,将该优化结果应用于实践,给企业带来的效益是显著的。 相似文献
4.
基于蠕变模型细间距器件焊点疲劳寿命预测 总被引:3,自引:0,他引:3
基于Garofalo-Arrheninus模型,采用有限元软件Marc模拟焊点温度场、应力—应变场和变形情况,借助修正C-M方程计算焊点的疲劳寿命。研究结果发现,器件相应材料中,只有印刷电路板内部温度场分布不均匀,这是材料热传导系数过小所导致的。发现应力集中的区域出现在焊根、焊趾以及引线和焊点交界处,基于Marc软件和基于Ansys软件模拟的结果一致,并和实际情况良好吻合。时间历程蠕变和塑性应变出现明显的累积迭加的趋势,两者共同作用导致焊点破坏,致使器件失效。在温度循环加载的过程中,整个器件一直处于拉应力的状态。基于修正C-M方程计算出焊点的疲劳寿命为665.7周次,和试验结果基本吻合。 相似文献
5.
6.
7.
对P92钢在600℃下进行应力和应变控制的蠕变-疲劳试验,分析了载荷水平、保载时间对蠕变-疲劳损伤的影响;结合应力控制下的蠕变-疲劳试验数据,在黏塑性统一本构理论框架下引入修正的Chaboche非线性随动硬化率及蠕变应变并考虑损伤演化规律,构建了基于Chaboche理论的耦合蠕变-疲劳损伤本构模型,模拟了P92钢的蠕变-疲劳循环曲线.结果表明:P92钢在600℃下表现为循环软化特性;在应力控制下,P92钢高位保载的损伤与平均应力呈正相关,而低位保载的损伤与平均应力呈负相关;在应变控制下,P92钢产生应力松弛行为,保载时间越长,应力松驰越明显;建立的蠕变-疲劳损伤本构模型可以较好地模拟P92钢的循环特性,对于蠕变-疲劳过程中应力模拟的最大相对误差为7.30%. 相似文献
8.
9.
阐述了如何使用ASME规范案例2605-1对Cr Mo V钢加氢反应器进行高温蠕变疲劳分析与评定,总结出方法一是当前工程化过程中使用的主要方法。提出应开展高温蠕变疲劳耦合分析工具的开发,以尽早突破技术壁垒,开拓国际市场。 相似文献
10.
用于汽轮机转子或涡轮叶片的金属材料长时间在高温环境下受到交变载荷的作用,会发生严重的高温蠕变—疲劳损伤,从而降低了转子及叶片的使用寿命。文中分析了加载条件因素、环境因素、材料特性及热处理工艺等对汽轮机转子钢蠕变—疲劳裂纹形成及扩展的影响,从疲劳裂纹萌生原因、蠕变阶段材料的组织变化及疲劳—蠕变的交互作用综述了汽轮机转子钢疲劳蠕变的损伤机理;并指出以材料的蠕变疲劳损伤机理为基础,建立材料的本构关系及损伤演化方程,将是高温疲劳—蠕变损伤研究的重点。 相似文献
11.
12.
13.
14.
15.
16.
17.
制冷装置用蒸发器异型管板有其结构和使用条件的特殊性,不宜采用GB151-1999《管壳式换热器》进行管板设计计算,企业标准中管板厚度公式考虑因素较少,且得出的厚度较薄。通过全参数的有限元数值模拟,获得了一系列数据,分析了管板中应力与结构参数的关系。利用数据拟合技术,获得了异型管板的设计方法。 相似文献
18.
19.
蠕变—热疲劳交互作用的力学机理 总被引:1,自引:0,他引:1
随着航空航天、能源和化学工业的发展,高温设备的应用越来越广泛.这些设备在稳态运行中受到蠕变损伤,在起动、停车或工况突变时受到热疲劳或热机械疲劳损伤,潜在危险性极大,一旦发生事故往往是灾难性的.考虑材料的双线性随动强化性质和蠕变特性,研究蠕变-热疲劳交互作用的力学机理,得到如下结论: ①升温和保温过程生成的压缩非弹性应变(塑性应变和蠕变应变)越多,降温过程产生的拉应力和拉应变越大,设计受蠕变-热疲劳损伤的构件时宜优先选择具有较高压缩屈服点和较低蠕变速率的脆性材料.②蠕变影响着循环的应力幅和平均应力,并使它们经历一定数量的循环后达到稳定状态,可以把蠕变-热疲劳损伤等效为热机械疲劳损伤,从而使寿命预测和试验简单可行. 相似文献