首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MCrAlY bondcoats (M = Co, Ni) are used to protect metallic substrates from oxidation and to improve adhesion of ceramic thermal barrier coatings for high temperature applications, such as in land-based and aviation turbines. Since MCrAlYs are prone to take up oxygen during thermal spraying, bondcoats often are manufactured under inert gas conditions at low pressure. Plasma spraying at atmospheric conditions is a cost-effective alternative if it would be possible to limit the oxygen uptake as well as to obtain sufficiently dense microstructures. In the present work, high-velocity spray parameters were developed for the TriplexPro 210 three-cathode plasma torch using MCrAlY powders of different particle size fractions to achieve these objectives. The aims are conflictive since the former requires cold conditions, whereas the latter is obtained by more elevated particle temperatures. High particle velocities can solve this divergence as they imply shorter time for oxidation during flight and contribute to coating densification by kinetic rather than thermal energy. Further aims of the experimental work were high deposition efficiencies as well as sufficient surface roughness. The oxidation behavior of the sprayed coatings was characterized by thermal gravimetric analyses and isothermal heat treatments.  相似文献   

2.
研究了用高速火焰喷涂(HVOF)替代低压等离子喷涂(LPPS)沉积高质量的MCrAlY涂层。试验用粉料为NiCoCrAlTaReSiY,采用以煤油为燃料的K2型HVOF系统沉积涂层,研究喷嘴长度、喷涂工艺参数对粉末沉积工艺过程以及涂层性能的影响;测量涂层的孔隙率及氧含量,观察涂层经真空热处理以及高温空气氧化后的显微结构,测量了Al、O等元素在氧化涂层中的分布。结果表明,所沉积的NiCoCrAlTaReSiY涂层具有优越的抗氧化性。  相似文献   

3.
多功能超音速火焰喷涂粒子特性的数值模拟   总被引:2,自引:1,他引:1  
通过建立多功能超音速火焰喷涂火焰流场的数值模型,对超音速火焰喷涂粒子的速度特性和温度特性进行数值模拟,其结果揭示了多功能超音速火焰喷涂粒子的速度和温度的变化规律.根据数值模拟结果分析了粉末粒度对火焰焰流速度和温度的影响,用不同粒度参数重复模拟计算,这对喷涂粉末的加速和加热性能具有重要意义.  相似文献   

4.
采用数值模拟法,研究了高温空气燃烧炉内不同空气预热温度、氧气浓度和燃气入口温度对火焰特性和NOx生成和排放的影响规律。研究表明,在提高空气预热温度、降低氧气浓度条件下,在较大范围内进行燃烧,火焰体积变大,炉内温度的峰值相应降低,温度分布更均匀,NOx的生成量大幅度降低。提高燃气入口温度,可抑制燃料和空气在主燃烧区的混合,使火焰内反应物的分布更加均匀,抑制了热力NO的生成,从而减少了NOx的排放量。  相似文献   

5.
The thermal fatigue behavior of thermal barrier coatings (TBCs) with the NiCoCrAlTaY bond coats deposited by cold spraying and low-pressure plasma spraying (LPPS) was examined through thermal cyclic test. The TBCs were subjected to the pre-oxidation before the test in an Ar atmosphere. The results show that a more uniform TGO in both thickness and composition forms on the cold-sprayed bond coat than that deposited by LPPS. The TBCs with the cold-sprayed bond coat exhibit a longer thermal cyclic lifetime than that with the LPPS bond coat. The differences in oxidation behavior and thermal cyclic behavior between two TBCs were discussed based on the evident difference in the surface morphology of two MCrAlY bond coats deposited by cold spraying and LPPS.  相似文献   

6.
To improve the corrosion resistance and to study the effect of yttrium in the behavior of coatings produced by thermal spraying MCrAlY (M=Ni, Co) powders, CO2 laser processing was conducted. Three methods were used: (1) a combination of gas flame and plasma spraying in air followed by laser glazing in argon, (2) low-pressure plasma spraying (LPPS) and laser glazing in argon, and (3) LPPS and laser-gas (O2) alloying. Laser glazing in argon of the MCrAlY coatings sprayed in air promoted formation of weakly adherent agglomerates of Al–Y oxides and an alumina-chromia solid solution. Glazing in argon atmosphere of LPPS CoNiCrAlY and NiCrAlY coatings caused the formation of nickel aluminides besides the formation of Y–Al compounds. Gas (O2)-alloying of these coatings produces continuous and adherent (yttrium-containing) alumina and chromia layers. The effects of yttrium on the characteristics of the oxides formed in the coatings during laser glazing, laser-gas alloying, and high-temperature oxidation is discussed. This work also investigated the oxidation resistance of the laser-processed MCrAlY coatings in air and in the presence of 85 mol/o V2O5–Na2SO4 fused salt at 900°C.  相似文献   

7.
随着发动机的服役温度日益升高,工作环境日益恶劣,涡轮叶片极易在高温环境中氧化,大大降低了叶片的使用寿命。如何在低成本下制备保护性能好的高温防护涂层,是当前国内外研究的重点。MCrAlY包覆涂层可分为NiCrAlY涂层、CoCrAlY涂层和NiCoCrAlY涂层,这3类涂层的抗氧化性能和抗腐蚀性能较好,又有很好的塑韧性和抗热疲劳性能,因此可作为涂层或热障涂层的黏结层材料。综述了涂层中主要元素(Al、Cr、Co、Y)、掺杂合金元素(Ta、Re、Si、Pt)、涂层制备工艺和预处理工艺对MCrAlY涂层性能的研究进展。结果表明,可以通过调节MCrAlY涂层的成分来实现涂层性能的调控。向MCrAlY涂层中掺入Si、Ta和Re等活性元素,可显著提高涂层的抗高温氧化性能,以进一步提高发动机的工作效率和满足高温的工作环境需求。总结了采用细化涂层晶粒、掺杂纳米颗粒和制备梯度复合涂层等方法来提高MCrAlY涂层的抗氧化性能和抗腐蚀性能的研究现状,对MCrAlY涂层的发展趋势进行了展望。  相似文献   

8.
超音速火焰喷枪设计理论与数值模拟的研究进展   总被引:6,自引:0,他引:6       下载免费PDF全文
超音速火焰喷涂作为热喷涂领域的新技术具有粒子飞行速度高 ,涂层质量好等优点。本文在介绍了超音速火焰喷涂的原理、特点、应用的基础上 ,阐述了国内外超音速火焰喷枪结构设计的研究进展 ,分析了目前国际上流行的六种喷枪结构的特点 ,综述了用数值模拟的方法探讨喷嘴内外焰流的工作状态、焰流及粒子的压力场、速度场与温度场的变化规律 ,从而为超音速火焰喷涂技术的发展和超音速喷枪的优化设计提供基础  相似文献   

9.
The performance of thermal barrier coatings is influenced by the high temperature oxidation behavior of the bond coat. In this paper, NiCoCrAlTaY bond coat was deposited by high velocity air-fuel (HVAF) spraying, and the microstructure and surface morphology of the bond coat before and after oxidation were examined to aim at developing high performance thermal barrier coatings. Results showed that the HVAF sprayed NiCoCrAlTaY coating presented a dense microstructure and some partially melted particles with a near spherical morphology were deposited on the coating surface. A uniform ??-Al2O3 scale was formed on the HVAF sprayed MCrAlY coating surface after the pre-oxidation treatment in an argon atmosphere. A small fraction of nodular-shaped mixed oxides was formed when the MCrAlY coating was oxidized for 100?h at 1000?°C. The amount of the mixed oxides increased less significantly after 200?h oxidation. A homogeneous ??-Al2O3 oxide scale was maintained over the large particles on the bond coat surface after 200?h oxidation at 1000?°C in air. A model is proposed to explain the formation of nodular-shaped mixed oxides.  相似文献   

10.
超音速颗粒轰击处理对MCrAlY涂层TGO生长的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用超音速火焰喷涂方法在镍基高温合金(GH99)上制备了MCrAlY涂层,并进行超音速颗粒轰击处理,研究了超音速颗粒轰击工艺对MCrAlY涂层显微结构和热生长氧化物(TGO)的影响.结果表明,通过表面轰击处理,增加了涂层中Al元素的扩散通道;高温氧化过程中MCrAlY涂层表面很快形成连续致密的Al2O3膜,保护了Ni,Cr等元素避免被氧化,从而避免了Ni(Cr,Al)2O4,NiO等大颗粒氧化物的生成;这样减少了涂层中的裂纹产生和扩展的可能性,从而提高涂层抗高温氧化性能.  相似文献   

11.
12.
Liquid-fuelled high-velocity oxygen–fuel (HVOF) thermal spraying systems are gaining more attentions due to their advantage of producing denser coatings in comparison to their gas-fuelled counterparts. The flow through a HVOF gun is characterized by a complex array of thermodynamic phenomena involving combustion, turbulence and compressible flow. Advanced computational models have been developed to gain insight to the thermochemical processes of thermal spraying, however little work has been reported for the liquid-fuelled systems. This investigation employs a commercial finite volume CFD code to simulate the flow field through the most widely used liquid-fuel HVOF gun, JP5000 (Praxair, US). By combining numerical combustion and discrete phase models the turbulent spray flame is captured and the development of supersonic gas flow is revealed. The flow field is thoroughly examined by adjusting the nozzle throat diameter and combustion chamber size. The influence of fuel droplet size on the flame shame shape and combusting gas flow is also examined.  相似文献   

13.
Chemical composition and surface morphology of MCrAlY coatings are factors which influence the oxidation behavior and the thermal durability of thermal barrier coatings. In this study, Cold-sprayed Ni20Cr10AlY and Ni23Co20Cr8.5Al4.0Ta0.6Y coatings with polished surfaces were employed to study the effect of composition on the oxidation behavior. The cold-sprayed MCrAlY coatings at the as-sprayed and shot-peened surface conditions, along with the low pressure plasma-sprayed MCrAlY coating with sputters adhered weakly on the surface, were employed to investigate the effects of surface morphologies of MCrAlY coatings on their oxidation behavior. Cold-sprayed Ni20Cr10AlY coating exhibited a two-stage oxidation behavior and a higher TGO growth rate than that of the cold-sprayed Ni23Co20Cr8.5Al4.0Ta0.6Y coating at the rapid growth stage. After 10-h oxidation, the TGO on the as-cold-sprayed coating surface was mainly constituted by Al2O3, while the TGO on the coating surface attached with sputters was composed of Al2O3 and Cr/Ni-oxides. After 500-h oxidation, Cr2O3 and porous spinel appeared in the TGO on the surface of the as-cold-sprayed coatings with different compositions. The growth of Cr/Ni-oxides was attributed to the Al depletion. The content of spinel decreased on the cold-sprayed NiCrAlY with a shot-peened surface compared with the as-sprayed coating.  相似文献   

14.
WC-Co coatings are primarily deposited using the high velocity oxy-fuel (HVOF) spray process. However, the decomposition and decarburization of carbides during spraying affects the wear performance and fracture toughness of the coatings. In this paper, a novel high pressure HVOF was developed to achieve lower particle temperature and higher particle velocity. It enables combustion chamber pressures up to 3.0 MPa. The influence of combustion chamber pressure and oxygen/fuel ratio on WC-Co particle velocity and temperature levels were analyzed by numerical simulation. The experimental results show that the combustion chamber pressure and the oxygen/fuel ratio have a significant influence on particle velocity and melting degree, as well as on the microstructure and microhardness of the coating. High velocity WC-Co particles in different states, i.e., molten, semi-molten, and non-molten can be readily obtained by changing the spraying conditions. A comparison to the conventional JP-5000 was also performed.  相似文献   

15.
The effect of MCrAlY‐bondcoat manufacturing parameters prior to TBC deposition on the bondcoat oxidation behavior and TBC lifetime was studied. The studied material was a NiCoCrAl(Y/Hf) free‐standing coating. It was found that variation of oxygen partial pressure during vacuum plasma spraying and the vacuum heat treatment procedure significantly affects the yttrium and hafnium distribution in the coating. In coatings sprayed at high pO2, yttrium and hafnium were mainly tied up into oxide precipitates. This effect is apparently responsible for an early alumina scale spallation and failure of the initially studied TBC system during cyclic oxidation. In contrast, the coating sprayed at low pO2 revealed an overdoping effect, i.e. extensive yttrium and hafnium incorporation into the scale resulting in an accelerated scale growth rate and internal oxidation. It was shown that by variation of the vacuum heat treatment parameters the yttrium and hafnium distribution in the near‐surface regions of the low oxygen coating can be modified. The latter result demonstrates the potential of minimizing the negative overdoping effect on the scale growth in the thermal‐sprayed MCrAlY coatings with low oxygen and/or high reactive element contents by optimization of the vacuum heat treatment procedure.  相似文献   

16.
Acoustic noise generation is an accompanying effect produced during thermal spraying. This type of noise is found both during the preparatory stages, such as grit blasting and compressed air cleaning, and during thermal spraying. A real-time noise meter was used to measure the noise level at frequencies between 63 and 8000 Hz during the operation of powder flame, wire flame, wire arc, air plasma, and high velocity oxygen fuel (HVOF) spraying processes. Noise was reported as either an A-weighted noise spectrum or an equivalent sound pressure level. The effect of different parameters, such as secondary plasma gas type, modes of wire flame torch operation, and use of compressed air cooling were investigated. The results indicated that the turbulence of the gas departing from the torch gives rise to jet noise. High gas flows mainly contributed to the lower frequencies, whereas combustion and plasma generation contributed to the higher frequencies. Noise level was the highest (123 dB(A)) with HVOF spraying and air plasma spraying with the use of a small-diameter nozzle and hydrogen as a secondary plasma gas. All manual operators of thermal spray equipment require hearing protection. The use of different hearing protection devices is discussed and the attenuation provided by each device is reported.  相似文献   

17.
为提高Ni3Al基高温合金IC6的抗高温氧化性能,采用高能高速等离子喷涂设备在其表面制备了MCrAlY涂层,测试了1 000℃高温条件下经300h氧化后涂层的抗氧化性能。结果表明:300h试验后,涂层的单位面积氧化增重为5.584g/m2,氧化速率为0.019g/m2·h,达到了完全抗氧化级。分析认为:高能高速等离子喷涂工艺制备的MCrAlY涂层与基体结合紧密,孔隙、裂纹及氧化物夹杂含量少,有效的阻隔了氧气的扩散通道,使得氧化物的生长缓慢。同时在高温氧化过程中,涂层表面生成了大量的Al2O3膜,阻碍了金属原子与氧原子的扩散,降低了涂层的氧化速率。另外涂层中含有的Y及Y2O3增加了氧化膜的粘附性,对氧元素的扩散具有抑制作用。  相似文献   

18.
In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.  相似文献   

19.
High—temperature protective coatings on superalloys   总被引:3,自引:1,他引:3  
1 INTRODUCTIONSuperalloysandhigh temperatureprotectivecoatingsareplayingtheessentialandimportantroleinthefieldsofmodernenergy sou  相似文献   

20.
The flame spraying process, which is a common industrial thermal spraying application, has been analyzed by means of three-dimensional computational fluid dynamics (CFD) simulations. The process used at the Volvo Aero Corporation for the coating of fan and compressor housings has been modeled. The process uses the Metco 6P torch (Metco, Westbury, NY), which ejects a mixture of acetylene and oxygen at high speed through a ring of 16 orifices to form the flame. A stream of argon gas flowing through an orifice in the center of the ring carries a powder of nickel-covered bentonite through the flame to the spray substrate. The torch is cooled by a flow of air through an outer ring of 9 orifices. The simulation emulated reality closely by including the individual inlets for fuel, cooling air, and injected particles. The gas combustion was simulated as a turbulent, multicomponent chemically reacting flow. The standard, two-equation k-ε turbulence model was used. The chemical reaction rates appeared as source terms in the species transport equations. They were computed from the contributions of the Arrhenius rate expressions and the Magnussen and Hjertager eddy dissipation model. The first simulations included several intermediate chemical substances whose predicted concentration agreed favorably with measurements. Later, more simplified simulations incorporated only the global chemical reaction involving the initial and the final products, with corrections to the thermal properties being made to account for the missing intermediaries. The gas velocity and temperature fields predicted by the later simulations compared satisfactorily to those predicted by the earlier, more elaborate, ones. Therefore, the final simulations, which incorporated injected particles, were conducted employing the simplified model with only the global reaction. An in-house finite difference code was developed to calculate particle properties. Allowance was made for elliptical shapes, phase changes, and internal heat transfer with regard to the composite material. The particle velocities and temperatures predicted by the final simulations compared fairly well with experimental results obtained with the optical DPV2000 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号