首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this research were to examine the mechanical and water vapor barrier properties of the starch/decolorized hsian-tsao leaf gum (dHG) films as a function of dHG and glycerol concentration. Edible film-forming solutions were prepared by mixing tapioca starch with dHG at different starch/dHG ratios to make a total solid content of 2%. In total, 15–40% glycerol was then added based on the dry film matter. Starch/dHG films were obtained by casting. It was found that the puncture strength, tensile strength, and modulus as well as the inverse of relaxation coefficient of starch/dHG films pronouncedly increased with increasing dHG, accompanied with a decreasing tendency in puncture deformation and tensile strain at break. Such results implied that starch interacted with dHG synergistically, resulting in the formation of a new network to improve the mechanical properties of tapioca starch/dHG films. Mechanical strengths of starch/dHG films decreased and water vapor permeability (WVP) at 75% RH increased with increasing glycerol concentration. However, the plasticizing effect of glycerol became less significant at high dHG concentration, particularly for the puncture deformation and tensile strain at break of the films. Water sorption isotherm results indicated that significant water sorption would only occur at high water activity (about 0.75), and generally became more pronounced with increasing glycerol and dHG concentration, but to a lesser extent for the latter. Dynamic mechanical analysis revealed that the major glass transition of starch/dHG films occurred at about −50 °C.  相似文献   

2.
The objective of this research is to enhance the water barrier properties of tapioca starch/dHG edible films by incorporating sucrose ester surfactants with different HLB values. The moisture sorption isotherms, mechanical properties, microstructure and optical character of the resulting films were examined as well. It was found that the water barrier property of starch/dHG films is promoted significantly by surfactants, alongside a decreasing tendency in tensile strength and tensile strain at break. Scanning electron micrographs of the starch/dHG/surfactant composite films revealed the folded (multi-layer) microstructure in contrast to the homogeneous matrix of the control films. Starch/dHG/surfactant composite films show low opacity values. With increasing HLB value of the surfactant, the water vapor permeability and tensile strength of starch/dHG/surfactant composite films decrease. Moreover, the water vapor permeability, tensile strength, strain at break, and equilibrium moisture content of starch/dHG/surfactant composite films decrease when the surfactant content is increased, accompanied by an increasing tendency in opacity value. On the other hand, starch/dHG composite film with an emulsion of surfactant and beeswax shows a lower mechanical strength and significantly higher opacity value with less improvement in water vapor permeability.  相似文献   

3.
The physical properties and antimicrobial activities against Listeria monocytogenes of the tapioca starch/decolorized hsian-tsao leaf gum (the polysaccharide gum extracted from hsian-tsao herb followed by removing the color matters, abbreviated as dHG hereafter)-based films incorporated with potassium sorbate (KS) or the ethanolic extract of thyme (TH) were investigated. It was found that the cross-sectional microstructure of starch/dHG films with KS showed some rough texture, and films with TH showed a relatively smooth microstructure with dispersed microparticles. The equilibrium moisture content and water vapor permeability of starch/dHG films with 20 % KS (based on the weight of starch/dHG) was higher than the others tested, possibly due to the plasticizing effect of KS. In general, the tensile strength and tensile modulus decreased with increasing antibacterial concentration. As compared with the KS solutions, the TH solutions showed a pronounced antimicrobial activity against L. monocytogenes as determined by the inhibition zone test. However, the antimicrobial migration of both KS and TH in the starch/dHG matrix was limited to a certain extent, as evidenced by the significantly lower antimicrobial activity in the film system. When applying the starch/dHG films with antimicrobials to the fresh beef slices, all samples showed detectable improvement against the growth of L. monocytogenes, implying that starch/dHG films incorporated with TH or KS were effective against L. monocytogenes in conjunction with some modification of the physical properties due to the interactions between the antimicrobials and the components of film matrix.  相似文献   

4.
The moisture barrier and physical properties of bilayer films prepared by lamination of starch/decolorized hsian-tsao leaf gum (dHG) and surfactant layers were investigated. It was found that the water vapor permeability (WVP) of tapioca starch/dHG film (1.31 × 10?10 g/m s Pa) pronouncedly decreased by the aid of a surfactant layer lamination (1.36–5.25 × 10?12 g/m s Pa). The WVP of bilayer film increased with increasing the concentration of starch/dHG in the surfactant layer, but was not significantly influenced when it was thickened. The sorption isotherms of both monolayer and bilayer films made from starch/dHG showed typical behavior of water-vapor-sensitive hydrophilic biopolymers. However, the equilibrium moisture content of the monolayer film was significantly higher than that of bilayer films when water activity (aw) reaches 0.33. Both the tensile and puncture force of starch/dHG films did not vary significantly by laminating a surfactant layer, indicating the mechanical strength of surfactant layer is relatively weak, and this surfactant layer mainly served as a barrier for moisture. When compared to emulsion-based starch/dHG films with surfactant, the surfactant laminated starch/dHG films showed higher water barrier property, mechanical strength, and transparency.  相似文献   

5.
J.H. Han    G.H. Seo    I.M. Park    G.N. Kim    D.S. Lee 《Journal of food science》2006,71(6):E290-E296
ABSTRACT:  Hydrophobic beeswax emulsions were incorporated into hydrophilic starch films to modify physical, mechanical, and thermal properties of the films. Beeswax was added in the film-forming solution of high-amylose pea starch (35% to 40% amylose w/w) at the level of 0%, 10%, 20%, 30%, and 40% w/w of starch with glycerol as a plasticizer (40/60 of glycerol/starch). Addition of beeswax affected mechanical properties, significantly reducing tensile strength and elongation and increasing elastic modulus. Beeswax addition decreased water vapor permeability and increased oxygen permeability. However, the addition of hydrophobic wax particles in starch films marginally affected these physical properties below 30% beeswax in the films. Beeswax addition at the 40% concentration formed amylose–lipid complex that caused the dramatic changes of physical and thermal properties of the films.  相似文献   

6.
The gelling process of decolourised hsian‐tsao leaf gum (dHG)/starch mixtures was monitored as a function of starch/gum ratio and starch type using a dynamic rheometer. It was found that the gelling process followed first‐order kinetics. At starch/gum ratios of 5:1, 4:2 and 3:3, dHG interacted with starch synergistically, resulting in a marked increase in storage modulus (G′). Both the gelling reaction rate constant and plateau G′ value as a function of starch/dHG ratio showed a maximum at a certain starch/gum ratio. These results indicated that a suitable starch/dHG ratio could facilitate the formation of a three‐dimensional network structure and the conversion of chains in the sol fraction into a gel. The maximum G′ value reached depended on the unique chemistry of each starch. Mixed systems with tapioca starch generally showed lower plateau G′ values than mixed systems with wheat or corn starch, possibly owing to the lower amylose content of tapioca starch. © 2002 Society of Chemical Industry  相似文献   

7.
ABSTRACT:  Biopolymer films were developed from apple peels of apple process co-products and their physical properties were determined. Apple peel-based films with glycerol (23%, 33%, and 44%[w/w, dry basis]) were prepared using high-pressure homogenization (HPH) at different levels of pressure (138, 172, and 207 MPa). An evaluation of the rheological properties (elastic modulus [ G '], viscous modulus [ G "], and viscosity) of the film-forming solutions was performed. For the apple peel films, the water sorption isotherms, the kinetics of water absorption, the water vapor permeability (WVP), the oxygen permeability (OP), and the tensile properties were determined. The  G ' and viscosity of the film-forming solutions decreased significantly with increasing processing pressure ( P  < 0.05). However, no difference was observed in  G " values at different homogenization pressures ( P  > 0.05). The viscosity decreased from 644 to 468 kPa·s as the pressure increased from 138 to 207 MPa at 90 °C. The monolayer water content of the apple peel films decreased with increasing content of glycerol from 23% to 33%. Further increase in glycerol content did not change the monolayer water content. The water diffusion coefficient of the films was highest at the intermediate level of glycerol content. The barrier properties (WVP and OP) of the films increased with increasing level of glycerol, while processing pressure did not influence the gas barrier properties. The films prepared at 207 MPa were less stiff and strong, but more stretchable than those prepared at 138 and 172 MPa.  相似文献   

8.
淀粉成膜性和疏水性对表面施胶包装纸的影响   总被引:1,自引:0,他引:1  
本文研究了添加甘油对疏水改性木薯淀粉膜力学性能及阻隔性能的影响,甘油的添加降低了疏水改性淀粉膜的玻璃转化温度、储能模量及水蒸气透过量.当温度低于临界温度上限时,疏水改性淀粉将会出现固态及液态两种形式.热的淀粉溶液中加入适量的甘油可以抑制淀粉微粒的沉淀.与羟丙基淀粉相比,疏水改性淀粉中添加不同量的甘油并涂覆干基材表面,对基材的阻隔性、水蒸气透过量、接触角及可勃吸水值均有一定影响.从表面施胶基材的可勃吸水值和水蒸气透过量的变化上可以看出,淀粉的成膜性对基材的性能有非常重要的影响.良好的成膜性可以改善基材的阻气、阻湿性,而对基材表面润湿性的影响不大.随着甘油含量的逐渐增加,基材的水蒸气透过量不断减少;但仍无法得到较好的阻湿性能.本文中所用的疏水改性淀粉具有较好的氧气阻隔性能和接触角,因此,表面施胶后的基材具有较好的疏水特性.同时在实验条件下研究了淀粉沉淀对基材性能的影响,利用淀粉沉淀对基材表面进行施胶后即使淀粉成膜性较差,也可以得到较低的水蒸气透过量和较高的接触角.通过增加疏水改性淀粉中甘油的含量,表面施胶基材的可勃吸水值可以得到显著改善.  相似文献   

9.
In order to evaluate the impact of chitosan on the physical properties of wheat starch–glycerol films, part of the wheat starch was replaced by chitosan, and the effect of composition on the properties of both the films and the film-forming dispersions was studied. The latter became more stable and viscous as the chitosan proportion was increased in the mixture. Both polymers appeared to integrate homogeneously in the film matrix. The combined effect of the glycerol and chitosan proportions affected the mechanical and barrier properties of the films. The tensile strength and elastic modulus of the films were improved as chitosan ratio increased. The oxygen and water vapor permeability slightly increased in line with the amount of chitosan in the blend although the induced differences were very small. Chitosan ratio directly affected the antimicrobial properties of the films, which showed a significant bactericide activity when the chitosan–starch ratio in the film was 50%. Nevertheless, at a starch:chitosan ratio of 80:20, counts of coliforms did not exceed the initial value in the meat after 7 storage days.  相似文献   

10.
安飞  刘亚伟  刘洁 《食品科学》2017,38(15):101-107
为探讨交联作用对木薯淀粉凝胶的影响,利用快速黏度分析仪和动态流变仪研究不同交联度木薯淀粉的糊化特性和流变特性。黏度特性测试结果表明,随着交联度的增加,交联木薯淀粉的回生值和最终黏度先增加后减小,崩解值减小。由静态流变测试结果可知,不同交联木薯淀粉屈服应力T0大于0,流动指数n均小于1,表明该实验条件下木薯淀粉糊均为屈服-假塑性流体。淀粉糊(质量分数为6%)动态流变测试结果表明,在0.1~10.0 Hz频率范围内,交联木薯淀粉的储能模量(G’)和损耗模量(G")均高于原木薯淀粉G’和G";在4℃条件下老化2 h,适当的交联可以使木薯淀粉G’升高,损耗角正切值(tanδ=G"/G’)降低。淀粉糊(质量分数为15%)动态流变测试结果表明,在整个升温和降温过程中,交联木薯淀粉的G’和G"大于原木薯淀粉,降温过程中,淀粉凝胶的G’随交联度增加迅速增加,表现出更优越的凝胶特性。  相似文献   

11.
谷氨酸对木薯淀粉糊流变性质的影响   总被引:1,自引:0,他引:1  
卢静静  罗志刚 《食品科学》2012,33(15):11-14
采用哈克流变仪,研究谷氨酸对木薯淀粉糊流变性质的影响。结果表明:添加谷氨酸前后的木薯淀粉糊均为假塑性流体且具有触变性,随谷氨酸添加量的增加,假塑性和触变性均先增强后减弱;淀粉糊的表观黏度随剪切速率的升高而降低,具有剪切稀化现象。添加/未添加谷氨酸的木薯淀粉糊都呈现弱凝胶行为,随着谷氨酸添加量的增加,其储能模量(G')和耗能模量(G'')先增大后减小,损耗角正切值(tanθ)先减小后增大,最终趋向于牛顿流体的方向发展。  相似文献   

12.
为了提高淀粉基复合膜的力学性能和阻水性能,以酸解淀粉和聚己二酸-对苯二甲酸丁二醇酯(PBAT)为主要成膜基材,通过挤出吹塑法制备了酸解淀粉/PBAT复合膜,研究了淀粉/PBAT比例对复合膜结构、力学性能和阻隔性能等的影响。结果表明,随着PBAT含量的增加,淀粉/PBAT共混物的流动性增强,模量与复合黏度降低,淀粉与PBAT之间的氢键作用减弱。添加PBAT可显著提高淀粉膜的力学性能和阻隔性能,复合膜纵向最大拉伸强度和断裂伸长率分别为7.86 MPa和532.67%,最低水蒸气和氧气透过系数分别为3.74×10?11 g?m?1?s?1?Pa?1和5.77×10?15 cm2?s?1?Pa?1。  相似文献   

13.
本文以羟丙基交联木薯淀粉、聚羟基脂肪酸酯(PHA)为成膜基材,甘油(GLY)为主增塑剂,聚乙二醇200(PEG200)为辅增塑剂,有机改性蒙脱土(OMMT)为增强剂,采用挤压吹塑法制备淀粉/PHA复合膜。研究了PEG200与GLY质量比对淀粉/PHA复合膜性能的影响。采用X-射线衍射(XRD)、扫描电镜(SEM)和红外光谱(FT-IR)分别对膜的结构、微观形貌和分子间相互作用进行了表征,并测试了膜的水蒸气阻隔性、机械性能、透光率和色度。结果表明,主增塑剂甘油对淀粉/PHA共混体系具有较好的增塑效果,且随着辅增塑剂PEG200的加入,促进了淀粉、PHA分子与OMMT间纳米插层结构的形成,所成复合膜表面较为平整光滑,且透光率、白度值增加;当PEG200与GLY质量比为8/92时,所成复合膜阻水性较好,具有较高的断裂伸长率;当PEG200与GLY质量比为12/88时,所成复合膜具有较高的抗拉强度和透光率;辅增塑剂PEG200的添加能够增强各分子间的相互作用。在制备淀粉/PHA复合膜中,PEG200是一种较好的增塑剂和增容剂,PEG200与GLY的质量比不宜超过12/88。  相似文献   

14.
Biodegradable flexible films were developed from corn starch (CS) and chitosan (CH); their microstructure, mechanical and barrier properties were evaluated. Chitosan and starch blend filmogenic suspensions showed a pseudoplastic behavior, similar to that of chitosan solutions. Smooth surfaces, homogeneous and compact film structures were observed from microstructure studies using scanning electron microscopy (SEM). The addition of glycerol reduced film opacity and increased film solubility of both CS and composite CS‐CH films. Water vapor permeability values of composite CS‐CH films plasticized with glycerol ranged between 3.76 and 4.54× 10−11 g s−1 m−1 Pa−1, lower than those of the single component films. CS‐CH films were resistant and their flexibility increased with glycerol addition. Tensile strength values of CS‐CH films were comparable to those of low‐density and high‐density polyethylenes but lower than that obtained for cellophane, however, composite biodegradable films showed lower elongation at break values than the synthetic commercial ones. In conclusion, CS‐CH films can be described as biofilms with a homogeneous matrix, stable structure and interesting water barrier and mechanical properties, with great possibilities of utilization, and with the advantage of biodegradability.  相似文献   

15.
The effect of plasticizers, glycerol, sorbitol and poly(ethylene glycol) 400 (PEG 400), on mechanical and barrier properties of rice starch film has been investigated. Sorbitol‐ and glycerol‐plasticized starch films appeared homogeneous, clear, smooth, and contained less insoluble particles compared to unplasticized rice starch films. PEG 400 did not form plasticized films of suitable characteristics. The softness and stickiness of films improved with increasing concentrations of glycerol and sorbitol. In general, films plasticized with glycerol and sorbitol displayed a better solubility in water than unplasticized films, i.e. 35% (w/w) glycerol and 45% w/w (sorbitol) (optimum solubility). The tensile strength of films decreased especially in the high concentration regime of plasticizers, between 20–45% (w/w) of plasticizer/rice starch film. Through the entire concentration regime, the tensile strength of glycerol‐plasticized films was significantly lower than that of sorbitol‐plasticized films, but their elongation was larger. The water vapor transmission rate (WVTR) through plasticized films and the oxygen transmission rate (OTR) increased with glycerol and sorbitol concentrations, however, glycerol was revealed to be significantly more effective in reducing the tensile strength as well as increasing the WVTR and the OTR compared to sorbitol. With the higher tensile strength and the smaller OTR and WVTR, the 30% sorbitol‐plasticized film reveals an improved coating performance in terms of a reduction of coating failures.  相似文献   

16.
The use of starch for the production of biodegradable materials has been increasing. Wheat is an important source, however, durum wheat starch and its separated granular components had not been evaluated for this purpose. The aim of this study was to evaluate the physical and mechanical properties of durum wheat starch films when prepared with a distribution of different granular‐sized starches (A‐ and B‐type). Starch was isolated, and the A and B populations of granules were separated. Films were prepared by casting. Glycerol (G) was used as a plasticizer in concentrations of 25% and 40%, respectively. Starch films were evaluated using scanning electron microscopy (SEM), mechanical properties (tensile strength, TS, elongation at break, E, elastic modulus, EM), solubility, and X‐ray diffraction (XRD). Durum wheat starch films were transparent, flexible, and, according to SEM, highly homogeneous. Films prepared with 25% G showed brittle material behavior (TS = 42–50 MPa, E = 1.4–2.7%, and EM = 31–34 MPa), whereas those prepared with 40% G had ductile material characteristics (TS = 11–17 MPa, E = 4–41%, and EM = 4–11.3 MPa). These mechanical properties of the films were significantly affected by the glycerol concentration and the starch granule type used. The film solubility was low when compared to those reported in other studies. It increased with increasing plasticizer concentration. According to the XRD, the films showed a semi‐crystalline structure.  相似文献   

17.
Cassava‐starch based polymer films containing glycerol as a plasticizer (1.0‐2.5‐5.0%, w/w) and different lipids as additives (paraffin, stearyl alcohol, and beeswax – 0.25‐0.5‐1.0%, w/w) were produced. Control films were produced by heating a mixture of glycerol, starch, and water, while treated films were produced by the addition of lipids/ ethanol solutions. The solutions were kept at around 70ºC during amalgamation, and once congealed, were placed in a vacuum oven for 1 h at 90ºC. The solutions were then spun on 7‐inch diameter non‐stick disks, allowed to dry, and conditioned at 23ºC and 50% RH before testing. Cassava starch‐glycerol‐beeswax films were successfully produced with a stable film structure at glycerol concentration equal or below 5% (w/w). Addition of glycerol and beeswax did not visually change the color of the films. Increasing glycerol content improved elongation while decreasing tensile strength. Increasing the glycerol concentration from 1.0 to 5.0% increased the water vapor permeability by 150% and addition of beeswax further increased these values by 250%.  相似文献   

18.
D Kim  SC Min 《Journal of food science》2012,77(9):E240-E246
Edible biopolymer films were developed from gelatin extracted from trout skin (TSG) using thermal protein denaturation conditions and plasticizer (glycerol) concentration as variables. The amino acid composition of the TSG, elastic modulus, viscous modulus, and the viscosity of film-forming solutions, and tensile properties, water vapor permeability, solubility in water, and color of TSG-based films were determined. A 6.8% (w/w, wet basis) trout skin-extracted gelatin solution containing 9, 17, or 23% (w/w, dry basis) glycerol was heated at 80, 90, or 100 °C for 30, 45, or 60 min to prepare a film-forming solution. TSG can be characterized as a gelatin containing high contents of methionine and aspartic acid. The gelation temperature of the film-forming solution was 7 °C and the solution was subjected to heating to form a stable matrix for a film. Increased heating time of the film-forming solution reduced the film solubility (P < 0.05). Heating at 90 °C for 30 min was suggested as the requirement for film formation. As the concentration of glycerol in the film increased, film strength and moisture barrier properties decreased, while film stretchability increased (P < 0.05). Trout skin by-products can be used as a natural protein source for fabricating biopolymer films stable at ambient conditions with certain physical and moisture barrier properties by controlling thermal treatment conditions and glycerol concentrations. Practical Application: The fishing industry produces a significant amount of waste, including fish skin, due to fish processing. Trout skin waste has potential value as a protein source that can be used to form biopolymer edible films for packaging low and intermediate water activity food products, and thus may have practical applications in the food industry, which could be one way to cut waste disposal in the trout processing industry.  相似文献   

19.
The starch-based film properties database was created with 8 variables and 322 observations collected from the literature. The selected variables were: (1) the starch origin (potato, cassava (tapioca), corn (maize), wheat, yam), (2) the starch concentration, (3) the amylose content, (4) the glycerol concentration, (5) the ambient relative humidity during storage, (6) the aging time of films and two mechanical properties of the starch films at break, (7) tensile strength at break (sb) and (8) strain at break (eb). The main objective of this work was to classify the data set and to predict mechanical properties (tensile strength (sb) and strain at break (eb) of starch-based films using a Rival Penalized Competitive Algorithm to find the clusters and, for each class, an artificial neural network (ANN) model from 6 parameters (starch origin, starch concentration (%), amylose content (%), glycerol content, ambient relative humidity (RH) and the aging of films). Each ANN was optimized using a genetic algorithm. The root-mean square error (RMSE) and the coefficient of determination B allowed to choose the best ANN. The results showed that it was possible to distinguish five classes where the composition of each class Ci could be described accurately and connected with the mechanical behavior of the films. This work also showed that it was useful firstly to classify the database before attempting to predict the mechanical properties of the starch-based films.  相似文献   

20.
This study has demonstrated that gamma radiation induced an improvement of barrier properties and tensile strength of films containing calcium caseinate, whey protein isolate and glycerol (1:1:1) through creation of a crosslinked β‐structure. Up to 32 kGy the effect was accompanied by an increase in rigidity and was larger with increasing radiation dose. The irradiation of protein solutions also caused improvement of puncture strength of films prepared with potato starch, soluble potato starch or sodium alginate addition (at a level of 50 g kg?1 of total proteins). Addition of potato starch did not influence mechanical properties of films but significantly improved barrier properties. Addition of sodium alginate resulted in improvement of both puncture strength and barrier properties. Addition of sodium alginate to irradiated protein solution resulted in films revealing the greatest improvement in properties. Gels prepared using irradiated protein solutions mixed with calcium salt were stronger than gels prepared using non‐irradiated solutions owing to the preferred binding of calcium ions to the crosslinked protein network. Presence of sodium alginate and potato starch weakened the interaction of proteins with calcium ions owing to entrapment of proteins in the polysaccharide network, while addition of soluble potato starch promoted these interactions. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号