首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 159 毫秒
1.
将概念相似度的计算问题看做分类问题,提出一种基于Stacking方法的多策略本体映射框架;利用Stacking方法组合多种概念相似度算法,进而提出基于Widrow-Hoff理论的元数据分类算法LMSMC。该框架中,第0层分类器使用各种概念相似度算法对源本体进行分类,第1层分类器使用LMSMC算法对元数据进行分类,从而实现组合多种算法的本体映射。实验表明该方法比单独使用相似度算法在查全率、查准率上均有所提高。  相似文献   

2.
针对本体异构问题,提出基于概念相似度计算的多策略映射方法。选择过滤候选概念集及信息增益计算策略,缩小概念范围,减少计算量。计算时采用基于名称、概念属性和概念关系策略,并综合考虑实例相似度和结构相似度,通过赋予权值进行相似度合并,最终得到准确而完整的映射对。实验结果表明,该方法总体映射效果良好。  相似文献   

3.
本体映射过程中的概念相似度计算   总被引:2,自引:2,他引:2       下载免费PDF全文
随着本体技术的逐渐成熟,如何为本体搭建语义桥梁以实现知识的重用与共享成为新的研究热点。在分析现有相关技术的基础上,提出通过解析本体中概念的特征并借助语义相似度度量技术找到不同本体间相同或相近的概念对的计算方法,同时用于本体映射过程中。实验证明,该方法具有良好的效果。  相似文献   

4.
基于概念集群的本体映射方法研究   总被引:3,自引:0,他引:3  
吕文涛  向阳  张波 《计算机应用》2008,28(11):2859-2862
本体异构是目前本体应用的一大瓶颈,而本体映射则是解决本体异构性的基础。基于概念集群的本体映射方法(CCOM)将概念间的语义结构关系引入映射过程中,用概念集群相似度代替概念相似度进行映射规则推导。实验证明本方法具有较好的查全率与查准率。  相似文献   

5.
介绍了本体和本体映射的概念,以及目前本体映射的主要方法.针对目前本体映射方法中存在的不足,提出了一种新的本体映射方法--基于分类的本体映射方法,解决了本体概念相似度计算量过大的问题,并实现了基于该映射方法的原型工具COMT,最后通过一个本体映射实例加以验证.  相似文献   

6.
本体映射的关键是概念相似度的计算。本文提出的方法从三个方面来计算这一相似度,首先计算概念的语义相似度,其次计算概念描述相似度,最后计算邻近层次概念的相似度。  相似文献   

7.
本体映射中的概念相似度计算   总被引:1,自引:0,他引:1  
本体是概念、属性和关系的集合,本体映射是解决本体异构的最好方法.文中针对目前本体映射过程中概念相似度计算存在的问题,提出一种综合的相似度计算方法.先根据本体中两个概念名称的相似性,选出最相关的概念,减少相似度的计算,然后分别基于概念的属性、实例和关系来计算概念相似度,并进行综合得到概念相似度.在计算属性相似度时,先通过计算属性的信息增益来确定各个属性的优先级,最后只选取几个信息增益大的属性进行相似度的计算,从而减小计算量.  相似文献   

8.
郑诚  ;秦多荣 《微机发展》2008,(11):125-127
本体是概念、属性和关系的集合.本体映射是解决本体异构的最好方法。文中针对目前本体映射过程中概念相似度计算存在的问题,提出一种综合的相似度计算方法。先根据本体中两个概念名称的相似性,选出最相关的概念,减少相似度的计算,然后分别基于概念的属性、实例和关系来计算概念相似度,并进行综合得到概念相似度。在计算属性相似度时,先通过计算属性的信息增益来确定各个属性的优先级,最后只选取几个信息增益大的属性进行相似度的计算,从而减小计算量。  相似文献   

9.
随着本体的增多,本体异构是本体间互操作的主要障碍,阻碍了本体信息共享,解决本体异构最好的方法是本体映射。本体映射的关键是概念相似度的计算,但现今的计算模型考虑的影响因素比较单一。结合距离语义相似度和属性语义相似度,提出了一种综合语义相似度计算方法。实验证明,该方法可以提高计算结果的精确度。  相似文献   

10.
本体可以提供强大的知识表示方法,是信息检索领域中的重要内容。传统的本体概念相似度计算方法大多采用特定于描述语言的通用推理服务来进行匹配,这些方法忽略了概念的语义信息。通过设计一个基于OWL本体的语义检索模型,介绍了如何通过概念的属性以及层次关系来表达概念的语义,计算概念间的柔性相似度。实验结果表明,该方法能充分利用OWL属性特征与层次关系来计算相关概念之间的柔性相似度,可以根据需要动态地调节匹配范围,并给出其在文本分类中的应用。  相似文献   

11.
对高维特征集的降维是文本分类的一个主要问题。在分析现有特征降维方法的基础上,借助《知网》提出一种新的二次降维方法:采用传统的特征选择方法提取一个候选特征集合;利用《知网》对候选集合中的特征项进行概念映射,把大量底层分散的原始特征项替换成少量的高层概念进行第二次特征降维。实验表明,这种方法可以在减少文本语义信息丢失的前提下,有效地降低特征空间维数,提升文本分类的准确度。  相似文献   

12.
针对用户使用网站效率低和网站质量差的问题,提出了利用形式概念分析(FCA)来构建网页语义概念树的方法。该方法首先利用信息抽取、自然语言处理等技术对网页集进行文本抽取、分词,提取出描述文本语义的特征词;再以主题词表为参照,设计基于搜索引擎的词语相似度算法,将抽取的特征词全部转换成主题词表中主题词,对将抽取的语义信息转换成形式背景,利用规则、聚类等技术对形式背景进行约简。最后通过设计的建格算法构建概念格,实现概念树构建。实验结果表明,利用该方法构建的概念树可以作为网站本体模型的基础,对语义评估具有积极的意义,具有一定的应用价值和借鉴意义。  相似文献   

13.
本体映射是实现异构本体间互操作的有效方法,其核心环节是概念相似度的计算。针对传统概念相似度计算方法中存在的不足之处,提出了一种综合的概念相似度计算方法——DISS模型。该算法从概念定义、概念实例、概念结构三个方面计算相似度。实验证明,该算法改善了传统计算方法中存在的片面性和不完善性问题,提高了本体映射的查全率和查准率。  相似文献   

14.
The mapping method that is based on the name and structure of the ontology elements is the strategy used in most mapping methods. Methods using the name often only use the similarity between the individual elements in the ontology to predict the semantic relations between two ontologies, while the latter measure the mapping between two ontologies by means of the structural relations between the elements. The effects of these two kinds of mapping strategies are not ideal. Addressing this issue, the work presented in this paper proposes an ontology mapping approach, in which the ontology element name and structure are combined. It uses the approaches based on linguistics and distance to generate a variable weight semantic graph. On this graph, the similarity of element names and structure are calculated through iterative computation. In the process of iteration, similarity result values are constantly adjusted. The approach avoids the problem of single methods that cannot use the entire amount of ontology information; therefore, it provides a more ideal mapping result. For making full use of the message of ontology, our implementation and experimental results are provided to demonstrate the effectiveness of the mapping approach.  相似文献   

15.
现在信息检索的应用已经越来越广泛,但要在具体领域中做到准确搜索,仍然是一件比较难的事情。该文提出一种基于概念语义树的语义相似度计算方法,综合考虑了概念的语义关系、层次结构和继承关系等因素,尽可能的地提高在特定领域中的信息检索效率,并最后通过实验,验证了该方法的可行性。  相似文献   

16.
提出一种基于概念和语义相似度的聚类算法TCBCSS(Text Clustering Based on Concept and Semantic Similarity),TCBCSS算法基于WordNet对文档概念进行抽取和归并,形成语义网络,利用小世界理论和网络的几何特性对其进行分析并构建概念列表来表示文档,不仅有效解决了“表达差异”问题也有利于文档相似度的计算。TCBCSS算法利用两个概念列表的语义相似度作为文档间相近程度的度量,以图为基础进行聚类分析,避免了有些聚类算法对聚簇形状的限制,试验证明TCBCSS算法提高了聚类质量。  相似文献   

17.
基于知网的概念匹配细粒度化研究   总被引:1,自引:1,他引:1  
杨喜权  代书 《计算机应用》2008,28(11):2837-2839
基于知网的语义结构,构建了具有添加和删除特点的语义树,使概念的匹配粒度实现细化,并给出了概念语义树匹配算法。实验结果证明了算法的有效性,较好地解决"关键字障碍"和语义歧义性问题,提高查全率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号