首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A photodetector (PD) with metal-semiconductor-metal (MSM) structure has been developed using an amorphous SiCBN film. The amorphous SiCBN film was deposited on the silicon substrate using reactive RF magnetron sputtering. The optoelectronic performance of the SiCBN MSM devices has been examined through photocurrent measurements. Temperature effect, with respect to photocurrent ratios, has been studied. The detector sensitivity factor, which is determined through the PD current ratio, was greater than five at room temperature. Furthermore, the device showed an excellent current sensitivity factor that is greater than two even at a higher temperature of 200 oC . The improved performance of the device at higher temperatures could open avenues for high-temperature PD applications.  相似文献   

2.
Planar metal–semiconductor–metal (MSM) photodetectors with very thin hydrogenated amorphous silicon (a-Si) films were fabricated for the detection of ultraviolet (UV) radiation. Since DNA and proteins strongly absorb UV radiation, these detectors find application in DNA and protein detection. The performance of top and bottom electrode MSM structures with aluminum electrodes is compared. The measured results include a responsivity of 150 mA/W and an external quantum efficiency of 74% at a wavelength of 260 nm for the top electrode configuration at a bias of 2 $hbox{V}/muhbox{m}$ and a 10- $muhbox{m}$ finger spacing.   相似文献   

3.
We demonstrate near-infrared waveguide photodetectors using Ge-SiGe quantum wells epitaxially grown on a silicon substrate. The diodes exhibit a low dark current of 17.9 mA/cm2 at 5-V reverse bias. The photodetectors are designed to work optimally at 1480 nm, where the external responsivity is 170 mA/W, which is mainly limited by the fiber-to-waveguide coupling loss. The 1480-nm wavelength matches the optimum wavelength for quantum-well electroabsorption modulators built on the same epitaxy, but these photodetectors also exhibit performance comparable to the demonstrated Ge-based detectors at longer wavelengths. At 1530 nm, we see open eye diagrams at 2.5-Gb/s operation and the external responsivity is as high as 66 mA/W. The technology is potentially integrable with the standard complementary metal-oxide-semiconductor process and offers an efficient solution for on-chip optical interconnects.  相似文献   

4.
The transport properties of self-assembled guanosine supramolecules (SAGS) confined within nanoscale metal electrodes on transparent GaN semiconductor substrates have been studied. The modified guanosine molecules have been used as self-assembled nanowires to realize nanoscale UV-Visible photodetectors with self-assembly length ranging from 30 to 450 nm. The ribbon-like guanosine supramolecules exhibit semiconductor properties and have polarization along its axis due to the strong intrinsic dipole moment of guanosine molecules. The charge transport through the SAGS wire with nanoscale metal-semiconductor-metal structure on passivated Ga-terminated GaN surface can be explained by Schottky type conductivity and near-surface-states. The intrinsic polarization in SAGS nano-wires changes the band-offset at the metal-semiconductor interface similar to semiconductor photodiodes.   相似文献   

5.
We demonstrate, for the first time, the application of dopant-segregation (DS) technique in metal-germanium- metal photodetectors for dark-current suppression and high-speed performance. Low defect density and surface smooth epi-Ge (~300 nm) layer was selectively grown on patterned Si substrate using two-step epi-growth at 400degC/600degC combined with a thin (~10 nm) low-temperature Si/Si0.8 Ge0.2 buffer layer. NiGe with DS effectively modulates the Schottky barrier height and suppresses dark current to ~10 -7 A at -1 V bias (width/spacing: 30/2.5 mum). Under normal incidence illumination at 1.55 mum, the devices show photoresponsivity of 0.12 A/W. The 3 dB bandwidth under - 1 V bias is up to 6 GHz.  相似文献   

6.
Semiconductors - Attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy and effective lifetime measurements have been used to characterize amorphous/crystalline silicon...  相似文献   

7.
A systematic study of metal‐catalyzed etching of (100), (110), and (111) silicon substrates using gold catalysts with three varying geometrical characteristics: isolated nanoparticles, metal meshes with small hole spacings, and metal meshes with large hole spacings is carried out. It is shown that for both isolated metal catalyst nanoparticles and meshes with small hole spacings, etching proceeds in the crystallographically preferred <100> direction. However, the etching is confined to the single direction normal to the substrate surface when a catalyst meshes with large hole spacings is used. We have also demonstrated that the metal catalyzed etching method when used with metal mesh with large hole spacings can be extended to create arrays of polycrystalline and amorphous vertically aligned silicon nanowire by confining the etching to proceed in the normal direction to the substrate surface. The ability to pattern wires from polycrystalline and amorphous silicon thin films opens the possibility of making silicon nanowire array‐based devices on a much wider range of substrates.  相似文献   

8.
Most doping research into transition metal dichalcogenides (TMDs) has been mainly focused on the improvement of electronic device performance. Here, the effect of self‐assembled monolayer (SAM)‐based doping on the performance of WSe2‐ and MoS2‐based transistors and photodetectors is investigated. The achieved doping concentrations are ≈1.4 × 1011 for octadecyltrichlorosilane (OTS) p‐doping and ≈1011 for aminopropyltriethoxysilane (APTES) n‐doping (nondegenerate). Using this SAM doping technique, the field‐effect mobility is increased from 32.58 to 168.9 cm2 V?1 s in OTS/WSe2 transistors and from 28.75 to 142.2 cm2 V?1 s in APTES/MoS2 transistors. For the photodetectors, the responsivity is improved by a factor of ≈28.2 (from 517.2 to 1.45 × 104 A W?1) in the OTS/WSe2 devices and by a factor of ≈26.4 (from 219 to 5.75 × 103 A W?1) in the APTES/MoS2 devices. The enhanced photoresponsivity values are much higher than that of the previously reported TMD photodetectors. The detectivity enhancement is ≈26.6‐fold in the OTS/WSe2 devices and ≈24.5‐fold in the APTES/MoS2 devices and is caused by the increased photocurrent and maintained dark current after doping. The optoelectronic performance is also investigated with different optical powers and the air‐exposure times. This doping study performed on TMD devices will play a significant role for optimizing the performance of future TMD‐based electronic/optoelectronic applications.  相似文献   

9.
为抑制SiGeHBT基区生长过程中岛状物生成,降低位错密度,基于渐变温度控制方法和图形外延技术,结合BiCMOS工艺,研发了在Si衬底上制备高质量Si1-xGex基区的外延生长方法。通过原子力显微镜(AFM)、扫描电子显微镜(SEM)、X射线双晶衍射(XRD)测试,显示所生长的Si1,Gex基区表面粗糙度为0.45nm,穿透位错密度是0.3×103~1.2×103cm-2。,在窗口边界与基区表面未发现位错堆积与岛状物。结果表明,该方法适宜生长高质量的SiGeHBT基区,可望应用于SiGeBiCMOS工艺中HBT的制备。  相似文献   

10.
Semiconductor‐based photodetectors (PDs) convert light signals into electrical signals via the photoelectric effect, which involves the generation, separation, and transportation of the photoinduced charge carriers, as well as the extraction of these charge carriers to external circuits. Because of their specific electronic and optoelectronic properties, metal oxide semiconductors are widely used building blocks in photoelectric devices. However, the compromise between enhancing the photoresponse and reducing the rise/decay times limits the practical applications of PDs based on metal oxide semiconductors. As the behaviors of the charge carriers play important roles in the photoelectric conversion process of these PDs, researchers have proposed several strategies, including modification of light absorption, design of novel PD heterostructures, construction of specific geometries, and adoption of specific electrode configurations to modulate the charge‐carrier behaviors and improve the photoelectric performance of related PDs. This review aims to introduce and summarize the latest researches on enhancing the photoelectric performance of PDs based on metal oxide semiconductors via charge‐carrier engineering, and proposes possible opportunities and directions for the future developments of these PDs in the last section.  相似文献   

11.
The conversion of metal–organic frameworks (MOFs) into inorganic nanomaterials is considered as an attractive means to produce highly efficient electrocatalysts for alternative‐energy related applications. Yet, traditionally employed MOF‐conversion conditions (e.g., pyrolysis) commonly involve multiple complex high‐temperature reaction processes, which often make it challenging to control the composition, pore structure, and active‐sites of the MOF‐derived catalysts. Herein, a general, simple, room‐temperature method is presented for a controlled electrochemical conversion of MOF (EC‐MOF) films into porous, amorphous metal sulfides (a‐MSx). Detailed X‐ray photoelectron spectroscopy analysis and control over independent EC‐MOF parameters (e.g., scan‐rate and potential window) enable to gain insights on the MOF‐conversion mechanisms, and in turn to fine‐tune the porosity and composition of the obtained MSx. As a result, a highly active amorphous cobalt sulfide (a‐CoSx) electrocatalyst can be designed for hydrogen evolution reaction in neutral pH. Furthermore, the adjustable nature of the EC‐MOF method allows to draw conclusions about the correlation between the concentration of catalytically active species ( sites) and the hydrogen evolution properties of the a‐CoSx. Given the method's generality and the diversity of available MOF structures, EC‐MOF provides a compelling platform for a rational design of a wide variety of active electrocatalytic materials.  相似文献   

12.
We fabricated high-performance thin-film transistors (TFTs) with an amorphous-Al–Sn–Zn–In–O (a-AT-ZIO) channel deposited by cosputtering using a dual Al–Zn–O and In–Sn–O target. The fabricated AT-ZIO TFTs, which feature a bottom-gate and bottom-contact configuration, exhibited a high field-effect mobility of 31.9 $ hbox{cm}^{2}/hbox{V}cdothbox{s}$, an excellent subthreshold gate swing of 0.07 V/decade, and a high $I_{{rm on}/{rm off}}$ ratio of $≫hbox{10}^{9}$, even below the process temperature of 250 $^{circ}hbox{C}$. In addition, we demonstrated that the temperature and bias-induced stability of the bottom-gate TFT structure can significantly be improved by adopting a suitable passivation layer of atomic-layer-deposition-derived $hbox{Al}_{2} hbox{O}_{3}$ thin film.   相似文献   

13.
The electrostatic reliability characteristics of gallium nitride flip-chip (FC) power light-emitting diodes (PLEDs) with metal-oxide-silicon (MOS) submount are investigated for the first time. The electrostatic damage reliability of the reported diode submount and that of our proposed simple structure MOS submount are fabricated and compared. Their corresponding electrostatic protection capabilities are increased from 200 V (conventional PLED) to 500 V (FC-PLED on diode submount), to 500 V (FC-PLED on MOS submount with a SiO2 thickness of 297 A?), and even to a value as high as 1000 V (FC-PLED at a SiO2 thickness of 167 A?), which are much higher than the PLED industrial test value of 150 V at -5 V/-10 ? A criterion and are also much more robust than the previous academic reports.  相似文献   

14.
We report the first demonstration of an in situ surface-passivation technology for a GaN substrate using vacuum anneal (VA) and silane ( SiH4) treatment in a metal-organic chemical vapor deposition multichamber tool. Excellent electrical properties were obtained for TaN/HfAlO/GaN capacitors. Interface state density Dit was measured from midgap to near-conduction-band edge (EC) using the conductance method at high temperatures, and the lowest Dit of 1 × 1011 cm-2 · eV-1 at the midgap was achieved. Multiple frequency capacitance-voltage (C-V) measurement (10, 400, and 500 kHz) showed little frequency dispersion. Furthermore, the TaN/HfAlO/GaN stack was studied using high-resolution transmission electron microscopy, and the effectiveness of passivation using VA and SiH4 was evaluated using high-resolution X-ray photoelectron spectroscopy. The method reported here effectively removes the native oxide and passivates the GaN surface during the high-k dielectric-deposition process.  相似文献   

15.
Under first‐principles computations, a simple strategy is identified to modulate the electronic and magnetic properties of zigzag graphene nanoribbons (zGNRs). This strategy takes advantage of the effect of the floating dipole field attached to zGNRs via ππ interactions. This dipole field is induced by the acceptor/donor functional groups, which decorate the ladder‐structure polydiacetylene derivatives with an excellent delocalized π‐conjugated backbone. By tuning the acceptor/donor groups, –C≡C– number, and zGNR width, greatly enriched electronic and magnetic properties, e.g., spin gapless semiconducting, half‐metallic, and metallic behaviors, with the antiferromagnetic?ferromagnetic conversion can be achieved in zGNRs with perfect, 57‐reconstructed, and partially hydrogenated edge patterns.  相似文献   

16.
InGaN-GaN multiquantum-well (MQW) metal-semiconductor-metal (MSM) photodetectors (PDs) with the unactivated Mg-doped GaN cap layer were successfully fabricated. It was found that we could achieve a dark current by as much as six orders of magnitude smaller by inserting the unactivated Mg-doped GaN cap layer. For MSM photodetectors with the unactivated Mg-doped GaN cap layer, the responsivity at 380 nm was found to be 0.372 A/W when the device was biased at 5 V. The UV-to-visible rejection ratio was also estimated to be around 1.96 times 103 for the photodetectors with the unactivated Mg-doped GaN cap layer. With a 5-V applied bias, we found that minimum noise equivalent power and normalized detectivity of our PDs were 4.09 times 10-14 W and 1.18 times 1013 cmmiddotHz0.5W-1, respectively. Briefly, incorporating the unactivated Mg-doped GaN layer into the PDs beneficially brings about the suppression of dark current and a corresponding improvement in the device characteristics.  相似文献   

17.
程智翔  徐钦  刘璐 《电子学报》2017,45(11):2810-2814
本文采用YON界面钝化层来改善HfO2栅介质Ge metal-oxide-semiconductor(MOS)器件的界面质量和电特性.比较研究了两种不同的YON制备方法:在Ar+N2氛围中溅射Y2O3靶直接淀积获得以及先在Ar+N2氛围中溅射Y靶淀积YN再于含氧氛围中退火形成YON.实验结果及XPS的分析表明,后者可以利用YN在退火过程中先于Ge表面吸收从界面扩散的O而氧化,从而阻挡了O扩散到达Ge表面,更有效抑制了界面处Ge氧化物的形成,获得了更优良的界面特性和电特性:较小的CET(1.66 nm),较大的k值(18.8),较低的界面态密度(7.79×1011 eV-1cm-2)和等效氧化物电荷密度(-4.83×1012 cm-2),低的栅极漏电流(3.40×10-4 A/cm2@Vg=Vfb+1 V)以及好的高场应力可靠性.  相似文献   

18.
Belostotskaya  S. O.  Kuznetsov  E. V.  Rybachek  E. N.  Gubanova  O. V. 《Semiconductors》2020,54(13):1784-1790
Semiconductors - The method of metal-induced lateral recrystallization is an urgent research task for manufacturing integrated circuits of multilevel architecture, sensitive elements of sensors, as...  相似文献   

19.
A photoelectrochemical oxidation method was used to directly grow oxide layer on AlGaN surface. The annealed oxide layer exhibited beta-Ga2O3 and alpha-Al2O3 crystalline phases. Using a photoassisted capacitance-voltage method, a low average interface-state density of 5.1 times 1011 cm-2. eV-1 was estimated. The directly grown oxide layer was used as gate insulator for AlGaN/GaN MOS high-electron mobility transistors (MOS-HEMTs). The threshold voltage of MOS-HEMT devices is -5 V. The gate leakage currents are 50 and 2 pA at forward gate bias of VGS = 10 V and reverse gate bias of VGS = -10 V, respectively. The maximum value of gm is 50 mS/mm of VGs biased at -2.09 V.  相似文献   

20.
The mechanical flexibility of substrates and controllable nanostructures are two major considerations in designing high‐performance, flexible thin‐film solar cells. In this work, we proposed an approach to realize highly ordered metal oxide nanopatterns on polyimide (PI) substrate based on the sol‐gel chemistry and soft thermal nanoimprinting lithography. Thin‐film amorphous silicon (a‐Si:H) solar cells were subsequently constructed on the patterned PI flexible substrates. The periodic nanopatterns delivered broadband‐enhanced light absorption and quantum efficiency, as well as the eventual power conversion efficiency (PCE). The nanotextures also benefit for the device yield and mechanical flexibility, which experienced little efficiency drop even after 100,000 bending cycles. In addition, flexible, transparent nanocone films, obtained by a template process, were attached onto the patterned PI solar cells, serving as top anti‐reflection layers. The PCE performance with these dual‐interfacial patterns rose up to 8.17%, that is, it improved by 48.5% over the planar device. Although the work was conducted on a‐Si:H material, our proposed scheme can be extended to a variety of active materials for different optoelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号