首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion resistant behaviour of DLC films   总被引:1,自引:0,他引:1  
Diamond like carbon (DLC) films are deposited on AISI 304 SS using Plasma Enhanced Chemical Vapour Deposition (PECVD) method and their corrosion behaviour is studied. Corrosion resistance of DLC-coated AISI 304 SS has been found to increase in presence of corrosive solution (3.5% NaCl) as DLC functions physical barrier and restrain it from anodizing. DLC film is deposited using acetylene. Corrosion behaviour of the coated samples is tested by potentio-dynamic method. Surface morphology of the samples before and after corrosion tests is observed using high-resolution optical microscope as well as AFM.  相似文献   

2.
Pinhole defect in diamond-like carbon (DLC) film prepared by a hybrid process of plasma-based ion implantation and deposition using toluene plasma was evaluated by the critical passivation current density in the anodic polarization method. The area ratio of pinhole defects to the SUS304 bare substrate was decreased exponentially with increasing DLC film thickness and reached about 3×10-6% at film thickness. As a result, it is found that the corrosion resistance of DLC-coated specimens was improved with increasing film thickness. The production of an interfacial mixing layer by ion implantation from methane and acetylene plasmas between the DLC film and the substrate material reduced pinhole defects in the film.  相似文献   

3.
E. Liu  H.W. Kwek 《Thin solid films》2008,516(16):5201-5205
Diamond-like carbon (DLC) thin films used in this study were intended for their electrochemical properties. The DLC films were deposited by a filtered cathodic vacuum arc (FCVA) process on p-type silicon (100) substrates biased at different pulse voltages (0-2000 V). The chemical bonding structures of the DLC films were characterized with micro-Raman spectroscopy and the electrochemical properties were evaluated by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The DLC films showed high impedance, high polarization resistance and high breakdown potential in a 0.5 M H2SO4 aqueous solution, which were attributed to the high sp3 content and uniformity of the films. The excellent chemical inertness of the DLC films made them promising corrosion resistant coating materials.  相似文献   

4.
The in vitro degradation of magnesium alloys with various alloying elements, the effect of coatings, and the impact of an altered experimental environment are investigated. LANd442 and Nd2 alloys are subjected to a continuously moving environment during an immersion test allowing flowing SBF. Applying an MgF2 coating to the alloys increases the corrosion resistance of LANd442 but has no effect on the corrosion rate of Nd2 within the period of investigation. It leads to a more‐even degradation with less pitting corrosion in the early stages of corrosion. A bioglass coating on Nd2 increases the corrosion rate. The mass loss, volume loss, and loss in maximum force all show the same trends as the specimens degrade over time.  相似文献   

5.
Nickel–titanium shape memory alloys are useful orthopedic biomaterials on account of its super-elastic and shape memory properties. However, the problem associated with out-diffusion of harmful nickel ions in prolonged use inside the human body raises a critical safety concern. Titanium oxide films are deemed to be chemically inert and biocompatible and hence suitable to be the barrier layers to impede the leaching of Ni from the NiTi substrate to biological tissues and fluids. In the work reported in this paper, we compare the anti-corrosion efficacy of oxide films produced by atmospheric-pressure oxidation and oxygen plasma ion implantation. Our results show that the oxidized samples do not possess improved corrosion resistance and may even fare worse than the untreated samples. On the other hand, the plasma-implanted surfaces exhibit much improved corrosion resistance. Our work also shows that post-implantation annealing can further promote the anti-corrosion capability of the samples.  相似文献   

6.
Diamond-like carbon (DLC) films were deposited utilizing plasma enhanced chemical vapor deposition (PECVD) with four precursor gases such as methane, ethylene, acetylene and benzene in gas phase. Electron spin resonance (ESR) spectra showed that dangling-bond sites (DBSs) observed in all films were characterized by an isotropic broad single line. The DLC film with unsaturated precursor gases had the higher film growth rate and the higher DBS accumulative rate. Although the DBS in DLC films were quite stable at room temperature under anaerobic conditions, the DBS decayed rapidly to level off toward a limiting value when exposed to air. The stability and reactivity of the DBS in DLC film were assumed to depend on chemical structure of organic gas used as precursor. The detailed-ESR study on DBS of the DLC films could be one of the powerful tools for diagnosing the micro-structural properties and the quality of films.  相似文献   

7.
Laser powder bed fusion (LPBF) is an emerging metal additive manufacturing method that can pave a pathway for manufacturing NiTi shape memory alloys (SMAs) with high performance. Considering the unique characterizations of LPBF process, the position and sequence of laser irradiation are different under different laser scanning modes, which will affect the performance of as-built samples. Herein, four different chessboard sizes are utilized to fabricate NiTi parts. The surface quality and relative density first increase and then decrease with the increasing chessboard size, obtaining the optimal surface roughness of 9.95 μm and relative density of 99.7%, respectively, at a chessboard size of 5 mm. As the chessboard size increases, the more pronounced precipitation of Ni4Ti3 with a higher quantity induces a strengthening effect, leading to a higher microhardness value of ≈290 HV0.2 at a chessboard size of 9 mm. The electrochemical test shows a better corrosion resistance with a corrosion potential of 0.101 V and a corrosion current density of 1.670 × 10−5 A cm−2 at a chessboard size of 5 mm. The corrosion mechanism is further revealed. This work emphasizes the importance of chessboard size as a reference for optimizing the process of additive-manufactured NiTi SMAs.  相似文献   

8.
The diamond-like carbon (DLC) film was prepared on various metal substrates with a plasma-based ion implantation and deposition using superimposed RF and negative high-voltage pulses. The adhesion strength of DLC film was enhanced above the epoxy resin strength by implantation of carbon ions or mixed ions of carbon and silicon to the substrate surface before DLC deposition. In order to clarify the mechanism for improvement in adhesive strength, the microstructure of an interface between DLC film and substrate was examined in detail by transmission electron microscopy (TEM) observations in combination with EDS analysis. As a result, the enhancement in adhesion strength of DLC film by C ion implantation resulted from the formation of amorphous-like phase in the ion-implanted region of substrate, the production of carbon-component graded interface, the destruction of the oxide layer on the top surface of substrate, and the reduction of residual stress in DLC film by ion implantation during the deposition. The production of stress-free DLC film allowed us to demonstrate a supra-thick DLC film of more than 400 μm in thickness.  相似文献   

9.
10.
Different types of diamond-like carbon (DLC) films (ta-C, a-C, ta-C:H and a-C:H) were prepared on super hard alloy (WC-Co) substrate using a T-shape filtered arc deposition (T-FAD) system. At first, the film properties, such as structure, hydrogen content, density, hardness, elastic modulus, were measured. Ta-C prepared with a DC bias of −100 V showed the highest density (3.1 g/cm3) and hardness (70-80 GPa), and the lowest hydrogen content (less than 0.1 at. %). It was found that the hardness of the DLC film is proportional to approximately the third power of film density. The DLC films were then heated for 60 min in an electric furnace at 550 °C in N2. Only the ta-C film hardly change its structure, although other films were graphitized. The 200-nm thick ta-C film was then heated for 60 min through the temperature range from 400 to 800 °C in N2 with 2 vol.% of O2 and the film structure found to be stable up to 700 °C. The substrate was oxidized at 800 °C, indicating the ta-C film had a thermal barrier function up to that temperature.  相似文献   

11.
低温等离子体对NiTi形状记忆合金的表面改性   总被引:1,自引:0,他引:1  
杨隽  汪建华 《材料工程》2005,(2):10-12,16
在微波电子回旋共振低温等离子体条件下,用二乙二醇二甲醚为试剂对镍钛合金进行表面改性.在表面得到一层均匀、致密的固体薄膜.经过X射线光电子能谱和衰减全反射傅立叶变换红外光谱的分析和表征,发现沉积的涂层为类PEG结构,表面主要聚集大量-CH2-CH2-O键;血浆蛋白吸附实验显示,与改性前相比,等离子体沉积在镍钛合金表面的类PEG涂层能够有效抵抗蛋白质吸附.  相似文献   

12.
A modified electrolyte (CH3COOH-HClO4-A-B) for electropolishing (EP) of NiTi was presented for improving the corrosion resistance and biocompatibility of the alloy. Using the proposed parameters, a homogeneous and uniform surface was obtained. Atomic force microscopy (AFM) revealed that the surface roughness (Ra) for EP sample (23.21 nm) was close to mechanical polishing (MP) sample (19.36 nm). Analysis by X-ray photoelectron spectroscopy (XPS) showed that Ti/Ni ratio increased from 3.1 for MP sample to 27.6 for EP sample. Measurements using potentiodynamic polarization in Hanks' solution showed that no pitting occurred for EP sample even though the applied potential increased up to 1500 mV (vs SCE), while the MP sample was broken down at 650 mV. The present study indicates that electropolishing NiTi with this modified electrolyte contributes to the improved biocompatibility of NiTi.  相似文献   

13.
Chemical vapor deposition (CVD) of hard diamond-like carbon (DLC) films on silicon (100) substrates from methane was successfully carried out using a radio frequency (r.f.) inductively coupled plasma source (ICPS). Different deposition parameters such as bias voltage, r.f. power, gas flow and pressure were involved. The structures of the films were characterized by Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The hardness of the DLC films was measured by a Knoop microhardness tester. The surface morphology of the films was characterized by atomic force microscope (AFM) and the surface roughness (Ra) was derived from the AFM data. The films are smooth with roughness less than 1.007 nm. Raman spectra shows that the films have typical diamond-like characteristics with a D line peak at 1331 cm−1 and a G line peak at 1544 cm−1, and the low intensity ratio of ID/IG indicate that the DLC films have a high ratio of sp3 to sp2 bonding, which is also in accordance with the results of FTIR spectra. The films hardness can reach approximately 42 GPa at a comparatively low substrate bias voltage, which is much greater than that of DLC films deposited in a conventional r.f. capacitively coupled parallel-plate system. It is suggested that the high plasma density and the suitable deposition environment (such as the amount and ratio of hydrocarbon radicals to atomic or ionic hydrogen) obtained in the ICPS are important for depositing hard and high quality DLC films.  相似文献   

14.
Titanium-doped diamond-like carbon (Ti-doped DLC) films with a Ti content of 1.1 at.% were synthesized on a Si substrate by a process that involves filtered cathodic vacuum arc (FCVA) and metal vapor vacuum arc (MeVVA) systems. The effect of annealing temperature on the microstructure, surface roughness, hardness and electrical resistivity of the resulting films was evaluated in this study. The Raman spectra revealed that the degree of graphitization of the Ti-doped DLC thin films was increased from 25 to 600 °C and the microstructure of the films is converted to a nano-crystalline graphite structure. The resulting films maintain a smooth surface after the annealing process. The hardness of the Ti-doped DLC films increases as the annealing temperature increases up to 400 °C because the induced defects and the inter-atomic bonds are repaired after the annealing process. But the hardness decreases at the higher temperature due to the increase of number and size of the nano-crystalline graphitic domains. Since the degree of graphitization of the thin films increases, the electrical resistivity of the Ti-doped DLC thin films decreases from 0.038 to 0.006 Ω cm.  相似文献   

15.
Diamond-like carbon (DLC) films were deposited by a T-shape filtered arc deposition (T-FAD) apparatus, applying bias voltage to the plasma transportation duct which filters the macrodroplet emitted from the cathode, in order to obtain a higher deposition rate. Ion current, deposition rate, discharge voltage, duct current, and anode current were measured as a function of duct bias. The anode current decreased and the duct current increased when a positive bias was applied to the duct. This fact indicates that the T-shape duct acted as another anode of the vacuum arc discharge. It was found that the maximum deposition rate as well as the ion current was obtained at about 15 V of duct bias. Improvement in plasma transportation to the process chamber through the duct was considered from the viewpoint of the characteristics of duct current against bias voltage. The value of the optimum duct bias was the same as the intersection point of the characteristics of duct current against bias voltage.  相似文献   

16.
在NaCl溶液中Cu-Zn-Al形状记忆合金的电化学行为研究   总被引:2,自引:0,他引:2  
在NaCl溶液中对Cu-Zn-Al形状记忆合金的电化学行为进行了研究,结果表明,在NaCl溶液中Cu-Zn-Al形状记忆合金发生脱锌腐蚀,腐蚀表面主要由CuZn相组成,Cu-Zn-Al形状记忆合金随NaCl浓度增加,PH值降低,环境温度升高,阳极活性电流密度增大,电化学溶解敏感性增强,表面分析结果表明,Cl离子参与了电化学溶解历程,即促进了CuCl2的阴极还原反应,从而导致Cu-Zn-Al形状记忆合金的脱锌腐蚀。  相似文献   

17.
18.
NiTi合金形状记忆效应的微观机制研究进展   总被引:4,自引:0,他引:4  
胡益丰  邓文  黄乐 《材料导报》2006,20(2):114-117
NiTi合金具有优异的形状记忆功能和良好的生物体兼容性,近年来对它的应用研究受到工程界和医学界的重视,同时对NiTi合金形状记忆效应的微观机制的研究也在逐步深入.介绍了NiTi合金的主要特性及影响其形状记忆功能的主要因素,总结了NiTi合金的形状记忆效应和超弹性的微观机制研究现状,并指出了需对该合金进一步研究的一些问题.  相似文献   

19.
20.
李丹  高岩 《材料导报》2011,25(9):91-94,98
近等原子比的NiTi合金以其优异的特性在临床医学得到广泛应用,但是由于Ni离子溶出引致的潜在生物毒性以及无生物活性,抑制了NiTi合金在生物医用领域的进一步发展。为了改善上述缺陷,对NiTi合金进行表面处理成为当前国内外NiTi合金研究的热点。从不同的改性工艺出发,全面阐述了近年来国内外对致密态和多孔态NiTi合金进行表面改性的研究进展,对各种方法可能出现的问题进行了分析,指出现有的各种表面改性方法不能有效实现对多孔NiTi合金内部孔隙进行改性,并针对这一症结提出了采用原位氮化法对多孔NiTi合金进行改性的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号