首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single-stage power-factor-corrected AC/DC converter (SSPFC) usually causes high voltage stress on the intermediate storage capacitor, due to the lack of control of this voltage. The storage capacitor voltage varies largely with line voltage, and load current and is usually higher than the peak line voltage. This paper presents a new single-switch SSPFC based on a flyback topology for which the storage capacitor voltage is loosely regulated by the output voltage. Without using extra power switches to increase the control dimension, the proposed converter uses a flyback converter with dual-output transformer to achieve the control purpose. The range of storage capacitor voltage change against the change of input voltage and load current is significantly reduced. Moreover, the maximum storage capacitor voltage can stay below the peak line voltage at high line condition. Experimental results verifying the operation of the proposed SSPFC are also reported.  相似文献   

2.
This paper presents a single-phase soft-switched high power factor (PF) Sheppard-Taylor rectifier suitable for applications requiring low-voltage and high-current output. The proposed rectifier is designed to operate at discontinuous capacitor voltage mode. The Sheppard-Taylor converter in this mode of operation provides zero-voltage turnoff switching, as well as natural input PF correction over a wide range of input voltage, which makes the converter suitable for universal input applications. Due to its simplified control circuitry and reduced switch current stress, this converter presents better efficiency and higher reliability. In addition, the presented converter features continuous input-output currents, which result in low electromagnetic interference emission. Principle of operation, theoretical analysis, and experimental results from a laboratory prototype rated at 45 W/10 Vdc output voltage are presented. The measured efficiency and total harmonic distortion of the input line current were 85% and 3.2%, respectively. The input current harmonics meet the EN61000-3-2 Class D requirements.  相似文献   

3.
This paper investigates the integrated buck-flyback converter (IBFC) as a good solution for implementing low-cost high-power-factor ac-dc converters with fast output regulation. It will be shown that, when both buck and flyback semistages are operated in discontinuous conduction mode, the voltage across the bulk capacitor, which is used to store energy at low frequency, is independent of the output power. This makes it possible to maintain the bulk capacitor voltage at a low value within the whole line voltage range. The off-line operating modes of the IBFC are also investigated to demonstrate that the control switch of the proposed converter handles lower root-mean-square currents than those in similar integrated converters. The off-line operation of the IBFC is analyzed to obtain the design characteristics of the bulk capacitor voltage. Finally, the design and experimental results of a universal input 48 V-output 100 W ac-dc converter operating at 100 kHz is presented. Experiments show that the IEC-61000-3-2 input current harmonic limits are well satisfied and efficiency can be as high as 82%.  相似文献   

4.
A single-stage power-factor-corrected AC/DC converter   总被引:1,自引:0,他引:1  
This paper presents a single-stage isolated converter topology designed to achieve a regulated DC output voltage having no low-frequency components and a high-input power factor. The topology is derived from the basic two-switch forward converter, but incorporates an additional transformer winding, inductor and a few diodes. The proposed circuit inherently forces the input current to be discontinuous and AC modulated to achieve high-input power factor. The converter output is operated in discontinuous mode to minimize the bulk capacitor voltage variations when the output load is varied. Analysis of the converter is presented, and performance characteristics are given. Design guidelines to select critical components of the circuit are presented. Experimental results on a 150 W 50 kHz universal input (90-265 V) 54.75 V output AC/DC converter are given which confirm the predicted performance of the proposed topology  相似文献   

5.
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC–DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC–DC converter has variable conversion ratios and synchronous controller that lets the DC–DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0–10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.  相似文献   

6.
A single-stage quasi-resonant flyback converter using the synchronous rectifier (SR) is proposed for improving power factor and system efficiency. This converter operates at the critical conduction mode with the variable frequency (VF) control to reduce the switching loss of the primary switch. The bulk capacitor voltage can be independent of the output load and kept within a practical range for the universal line input. Therefore, the problem of high-voltage stress across the bulk capacitor is reduced. The proposed converter features relatively low bulk capacitor voltage in the universal line voltage and also complies with the Standard IEC 61000-3-2 Class D limits. Moreover, since it uses the voltage-driven SR, it achieves a high efficiency. The operational principle and theoretical analysis are presented. Experimental results for a 100?W (19?V/5.3?A) adapter at the VF were obtained to show the performance of the proposed converter.  相似文献   

7.
Single-stage power factor correction (PFC) AC/DC converters integrate a boost-derived input current shaper (ICS) with a flyback or forward DC/DC converter in one single stage. The ICS can be operated in either discontinuous current mode (DCM) or continuous current mode (CCM), while the flyback or forward DC/DC converter is operated in CCM. Almost all single-stage PFC AC/DC converters suffer from high bulk capacitor voltage stress and extra switch current stress. The bulk capacitor voltage feedback with a coupled winding structure is widely used to reduce both the voltage and current stresses in practical single-stage PFC AC/DC converters. This paper presents a detailed analysis of the bulk capacitor voltage feedback, including the relationship between bulk capacitor voltage, input current harmonics, voltage feedback ratio, and load condition. The maximum bulk capacitor voltage appears when the DC/DC converter operates at the boundary between CCM and DCM. This paper also reveals that only the voltage feedback ratio determines the input current harmonics under DCM ICS and CCM DC/DC operation. The theoretical prediction of the bulk capacitor voltage as well as the predicted input harmonic contents is verified experimentally on a 60 W AC/DC converter with universal-line input  相似文献   

8.
An analysis and design of single-stage, single-switch bi-flyback ac/dc converter is presented. The main flyback stage controls the output power from the link capacitor voltage with Discontinuous Conduction Mode (DCM) or Continuous Conduction Mode (CCM) operation, while an auxiliary flyback stage supplies the power to the output directly from ac line input with DCM operation.

This scheme can effectively reduce the voltage stress on the link capacitor and can achieve the power factor correction (PFC) without a dead band at line zero-crossings, which reduces the harmonic distortion in ac line current. Theoretical analysis of the converter is presented and design guidelines to select circuit components are given. The experimental results on a 60?W (15?V, 4?A), 100?kHz ac/dc converter show that maximum link voltage and maximum efficiency are around 415?V and 82%, respectively. The power factor is above 0.96 under universal line input and load conditions.  相似文献   

9.
A single-stage single-switch AC–DC integrated converter is proposed in this paper, as a tight DC voltage regulator with unity input power factor for the fundamental component of the input current. Proposed converter is formed by the integration of buck-boost configuration with a buck converter operated by a single switch. The buck-boost section of the proposed configuration is operated in current discontinuous conduction mode (DCM) to get unity input power factor at the supply terminals and the buck section is operated up to boundary current conduction mode (BCM). The features acquired by the converter operating in complete discontinuous conduction mode (DCM) are unity input power factor, zero-current turn-ON for the Switch, fast and good DC output voltage regulation with extensive conversion range and low voltage stress on the switch. Additionally, the intermediate capacitor voltage stress is independent of converter load variations and so the switch also is subjected to constant peak voltage stress. A comprehensive study is carried out to obtain the necessary design equations. A design model is implemented using simulation and hardware. The results confirm the performance of the proposed configuration.  相似文献   

10.
This paper presents an improvement of the well-known conventional three-phase diode bridge rectifier with dc output capacitor. The proposed circuit increases the power factor (PF) at the ac input and reduces the ripple current stress on the smoothing capacitor. The basic concept is the arrangement of an active voltage source between the output of the diode bridge and the smoothing capacitor which is controlled in a way that it emulates an ideal smoothing inductor. With this the input currents of the diode bridge which usually show high peak amplitudes are converted into a 120/spl deg/ rectangular shape which ideally results in a total PF of 0.955. The active voltage source mentioned before is realized by a low-voltage switch-mode converter stage of small power rating as compared to the output power of the rectifier. Starting with a brief discussion of basic three-phase rectifier techniques and of the drawbacks of three-phase diode bridge rectifiers with capacitive smoothing, the concept of the proposed active smoothing is described and the stationary operation is analyzed. Furthermore, control concepts as well as design considerations and analyses of the dynamic systems behavior are given. Finally, measurements taken from a laboratory model are presented.  相似文献   

11.
This work presents a novel simple forward AC/DC converter with harmonic current correction and fast output voltage regulation. In the proposed AC/DC converter, a transformer incorporating reset winding provides two main advantages. First, the bulk inductor used in the conventional boost-based power-factor-correction cell is omitted in the proposed converter, allowing significant volume and weight of magnetic material to be saved. Second, the voltage across the bulk capacitor can be held under 450 V by adjusting the transformer winding ratio, despite the converter operating in a wide range of input voltages (90/spl sim/265 V/AC). This new converter complies with IEC 61000-3-2 under a load range of 200 W and has fast output voltage regulation.  相似文献   

12.
This paper proposes a novel control strategy and a protection circuit and shows the advantage of utilizing a newly developed reverse blocking insulated gate bipolar transistor (RB-IGBT), to solve several practical problems of the matrix converter. The proposed control strategy is based on a virtual indirect control method with a virtual rectifier and a virtual inverter. Pulse-width modulated (PWM) pulses for the matrix converter are obtained by combining PWM pulses for the virtual rectifier and inverter. As a result, the control part of the input current and output voltage can be clearly separated. Thus, the conventional inverter control algorithms can be applied to the virtual inverter control. The advantage of this method is confirmed by experimental results with a 22-kW induction motor drive system. Good sinusoidal waveforms are obtained for the input and output currents, and the total harmonic distortion (THD) of the input and output current are 5.1% and 1.4%, respectively. The conduction loss of the RB-IGBT is decreased to about two-thirds of the conventional ac switch with series connection diode. Thus, the converter loss is about a half to the conventional PWM rectifier-inverter system with the same capacity. Furthermore, the protection problem is solved by a dynamic clamp method without an electrolytic capacitor. This protection circuit directly dissipates reactive load energy by dynamic clamp operation of an IGBT.  相似文献   

13.
A new control process for single-stage three-phase buck-boost type AC-DC power converters with high power factor, sinusoidal input currents and adjustable output voltage is proposed. This converter allows variable power factor operation, but this work focus on achieving unity power factor. The proposed control method includes a fast and robust input current controller based on a vectorial sliding mode approach. The active nonlinear control strategy applied to this power converter, allows high quality input currents. Given the comparatively slow dynamics of the DC output voltage, a proportional integral (PI) controller is adopted to regulate the converter output voltage. The voltage controller modulates the amplitudes of the current references, which are sinusoidal and synchronous with the input source voltages. Experimental results from a laboratory prototype show the high power factor and the low harmonic distortion characteristics of the circuit  相似文献   

14.
A high-sensitivity voltage-to-frequency converter (VFC) using an all-MOS voltage window comparator is presented in this work. The circuit is composed of one voltage-to-current converter, one charge and discharge circuit, and one all-MOS voltage window comparator. The input voltage is converted into a current which in turn triggers the charge and discharge circuit, where a built-in capacitor is driven. The voltage window comparator monitors the variated voltage on the capacitor and generate an oscillated output of which the vibration frequency is linearly dependent to the input voltage. In this way, the worst-case linear range of the output frequency of the proposed VFC is 0-55.40 MHz verified by simulations given a 0-0.9 V input range. The physical measurement of the proposed VFC shows a 0-52.95 MHz output frequency given a 0-0.9 V input range. The error in linearity is better than 8.5% while the power dissipation is merely 0.218 mW.  相似文献   

15.
This study presents a new simple flyback ac/dc converter with harmonic current correction and fast output voltage regulation. In the proposed ac/dc converter, an extra winding wound in the transformer provides two key advantages. The size of the bulk inductor used in the conventional boost-based power factor correction cell can be significantly reduced in the proposed converter. The voltage across bulk capacitor can be held under 450V by tuning the transformer winding ratio even though the converter operates in a wide range of input voltages (90 V/spl sim/265V/ac). This new converter complies with IEC 61000-3-2 under the load range of 200 W, and can achieve fast output voltage regulation.  相似文献   

16.
A new output voltage control technique is proposed to obtain the improved buck-boost operation of the quantum series resonant power converter (QSRC). The new nonlinear dynamic model of QSRC is first derived and the cross-coupled nonlinear term existing in the output voltage dynamics is decoupled by using control methods such as the periodic control of the boosting switch (PCBS) and the resonant current control (RCC). By applying the state-space averaging concept to the decoupled dynamics, two linear large signal averaged models are obtained for PCBS and RCC schemes. Using the proposed technique, the flux imbalance problem of the isolation transformer and the robustness of the output voltage response can be easily considered. This technique can also be widely applicable to the cascade buck-boost power converter, which can be implemented by inserting a boosting switch between the output filter inductor and the ripple capacitor of the forward power converter. The validity of the proposed scheme is confirmed by the computer simulations and the experiments  相似文献   

17.
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.  相似文献   

18.
Low cost passive power factor correction (PFC) and single-stage PFC converters cannot draw a sinusoidal input current and are only suitable solutions to supply low power levels. PFC preregulators based on the use of a multiplier solve such drawbacks, but a second stage dc-dc converter is needed to obtain fast output voltage dynamics. The output voltage response of PFC preregulators can be improved by increasing the corner frequency of the output voltage feedback loop. The main drawback to obtaining a faster converter output response is the distortion of the input current. This paper describes a simple control strategy to obtain a sinusoidal input current. Based on the static analysis of output voltage ripple, a modified sinusoidal reference is created using a low cost microcontroller in order to obtain an input sinusoidal current. This reference replaces the traditional rectified sinusoidal input voltage reference in PFC preregulators with multiplier control. Using this circuitry, PFC preregulator topologies with galvanic isolation are suitable solutions to design a power supply with fast output voltage response (10 or 8.33 ms) and low line current distortion. Finally, theoretical and simulated results are validated using a 500 W prototype.  相似文献   

19.
This paper presents analysis and design of a resonant AC/DC converter topology, suitable for use in an advanced single-phase, sine-wave voltage, high-frequency power distribution system of the type that was proposed for a 20 kHz space station primary electrical power distribution system. The converter comprises a transformer, a double-tuned resonant network comprising of series- and parallel-tuned branches, a controlled rectifier, and an output filter. Symmetrical phase control technique that generates fundamental AC current in phase with the input voltage is employed. Steady-state analysis of the converter in continuous current mode of operation is provided, and the performance characteristics presented. The proposed converter has close-to-unity rated power factor (greater than 0.98), a wide range of output voltage control (0%-100%), low total harmonic distortion in input current (less than 8%), and high conversion efficiency. Finally, selected experimental results of a bread-board converter are presented  相似文献   

20.
A current-assisted voltage control technique for high-power switch-mode-rectifier (SMR) converters is proposed. This technique implements a fast-forward AC current loop by sensing the current through the output filter capacitor. The control loop forces the AC current component of the output filter inductance to be synchronized with a symmetrical triangular reference waveform. As a result, the converter behaves like a fixed-frequency current-regulated voltage source with a low-output impedance and an increased bandwidth. A small-signal linear model is derived and the dynamic performance of a buck-derived SMR using the proposed control technique is analyzed. Simulation and experimental results are presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号