首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the 2001 completely revised version of DIN 1045‐1 for the first time an explicit proof against fatigue, more a fatigue analysis, have been published. A limit on the fatigue strength at two million cycles, as it was formerly common in civil engineering, is no longer in use. The influence of corrosion on the fatigue behaviour has been investigated insufficiently. It is thus not satisfyingly clarified. To fill this gap of knowledge, a research program was launched, in which fatigue tests at steel samples with a diameter of 16 mm were performed under going corrosion. The fatigue behaviour of the reinforcing steel was determined for four different corrosive media. The aim of the investiagtions was to show that the SN lines, which are the result of the fatigue tests, have exposure caused very different patterns. On the other hand it is examined, whether crack initiation and crack growth of the steel specimen can be recorded separately from each other. Therefore, different testing methods for crack detection were used. They differ especially with respect to their methodology. The article briefly describes the use of the testing methods for crack detection, explains the fatigue tests with the different corrosive liquids and discusses the test results.  相似文献   

2.
Abstract— Based on the assumption that normalized Kitagawa-Takahashi diagrams for different materials are the same, a unified model for microstructurally small fatigue crack and physically small fatigue crack growth rates was developed to describe their behaviour under different fatigue stress ranges. The stress-sensitive blocking effect of microstructural barriers to small fatigue crack growth is satisfactorily simulated by the model. Incorporated with the materials fatigue limit and microstructural barrier spacing, this model can be easily used in the prediction of small fatigue crack lifetime. Small fatigue crack growth rates of previous experimental studies in 7075-T6 Aluminium alloy and HT60 steel under different stress ranges are in an envelope between two boundary prediction curves corresponding to the largest and smallest stress ranges applied in the experiments. Problems concerning model accuracy and model application are also discussed in the present paper.  相似文献   

3.
The influence of an aggressive environment (0.6 M, aerated NaCl solution) on short fatigue crack initiation and growth behaviour has been studied. The study involved three major test series, namely: air fatigue, corrosion fatigue, and intermittent air fatigue/corrosion fatigue. The above tests carried out under fully reversed torsional loading conditions at a frequency of 5 Hz, showed that it was the non-metallic inclusions which took part in crack initiation resulting from debonding at metal matrix/inclusion interface and pitting of inclusions in both air and corrosove environments, respectively. Short fatigue crack growth results in these two environments obtained by using plastic replication technique, indicated a large effect of microstructure i.e. prior austenite grain boundaries. The stage/stages at which the environmental contribution was dominant has been discussed by considering the results achieved from intermittent tests. However, the mechanisms involved in corrosion fatigue short crack growth have also been described in the light of results obtained from futher investigations carried out by conducting corrosion fatigue tests under applied cathodic potential conditions and tests on hydrogen pre-charged specimens under air fatigue and uniaxial tension conditions.  相似文献   

4.
点蚀是不锈钢最有害的腐蚀形态之一,点蚀往往是应力腐蚀裂纹和腐蚀疲劳裂纹的起始部位。点蚀是一种腐蚀集中于表面的很小范围内,并深入到金属内部的腐蚀形态,一般形状为小孔状,其危害性比均匀腐蚀严重得多,会引起爆炸、火灾等事故。双相不锈钢兼有铁素体和奥氏体的特性,它将铁素体良好的强度、硬度和奥氏体优良的塑性和韧性结合起来,并具有优良的耐点蚀性能,无论是在力学性能上还是在耐腐蚀性上,双相不锈钢都明显优于铁素体不锈钢和奥氏体不锈钢,可以在点蚀环境中的特种设备上广泛使用。  相似文献   

5.
Fatigue crack growth has been widely studied, since it plays an important role on the damage tolerance analysis of mechanical components and structures. The environment, material properties and stress ratio significantly influence the fatigue crack growth behaviour of materials. Experimental tests were performed in M(T) specimens of a normalized DIN Ck45 steel at constant load ratios for R = 0.7, 0.5, 0, −1, −2, −3, in ambient air and vacuum conditions, using a new and patented chamber of vacuum. Special emphasis is given to the study of environment effects, stress ratios and related effects of crack roughness. Fracture surface roughness and crack closure effect were systematically measured for all tests in order to compare the influence of different environment and R-ratios. Results have shown that fatigue crack growth rates are higher in air than in vacuum and the fracture surface roughness is also higher in air than in vacuum for comparable stress ratios. The effect of the environment on fatigue crack growth rates seems to be more significant than any mechanical contributions such as plasticity, oxide and roughness which can induce the so-called crack closure.  相似文献   

6.
This paper is focused on the effect of sea water corrosion on the gigacycle fatigue strength of a martensitic–bainitic hot rolled steel R5 used for manufacturing off-shore mooring chains for petroleum platforms in the North Sea. Crack initiation fatigue tests in the regime of 106 to 1010 cycles were carried out on smooth specimens under three different environment conditions: (i) without any corrosion (virgin state) in air, (ii) in air after pre-corrosion, and (iii) in-situ corrosion-fatigue under artificial sea water flow. A drastic effect of sea water corrosion was found: the median fatigue strength beyond 108 cycles is divided by 5 compared to virgin state specimens. The crack initiation sites were corrosion pits caused by pre-corrosion or created during corrosion-fatigue under sea water flow. Furthermore some sub-surface and internal crack initiations were observed on specimens without any corrosion (virgin state). Crack propagation curves were obtained in mode I in air and under sea water flow. Calculation of the stress intensity factor at the tip of cracks emanating from hemispherical surface pits combined with the Paris–Hertzberg–Mc Clintock crack growth rate model showed that fatigue crack initiation period represents most of the fatigue life in the VHCF regime. Additional original experiments have shown physical evidences that the fatigue strength in the gigacycle regime under sea water flow is mainly governed by the corrosion process with a strong coupling between cyclic loading and corrosion.  相似文献   

7.
Corrosion fatigue behaviour of duplex stainless steel X 2 CrNiMoN 22 5 3 under heat transfer conditions The corrosion behaviour of metallic components is not only affected by the temperature of the corrosive environment but also by the heat transfer conditions between the heated material and the cooling agent. Therefore the corrosion fatigue behaviour of the austenitic-ferritic stainless steel X 2 CrNiMoN 22 5 3 (german material-number 1.4462) in 3% NaCl-solution is investigated for isothermal conditions and three different heat transfer conditions. The specimens are tested under cyclic tension load (R = s?u/s?o = 0) with a frequency off =25 Hz up to NGrenz 107. The isothermal fatigue strengths are 380 N/mm2 for room temperature and 340 N/mm2 for a temperature of 70°C. For heat transfer conditions between the sinusoidal loaded specimens and the corrosive agent a new developed testing equipment is presented. The corrosion fatigue strength for a heat flux of 45 KW/m2 reaches a value of 410 N/mm2, while the improvement relative to the isothermal room temperature strength is lower for higher heat flux values (100 and 150 KW/m2). The better corrosion fatigue behaviour for heat transfer conditions bases on the favourable conditions for the formation of the passive layer. The thickness of the layer is nearly twice as high as for isothermal room temperature corrosion and therefore the crack initiation is delayed. For higher values of heat flux local corrosion attack is found. With that the positive effect on corrosion fatigue strength is diminished.  相似文献   

8.
采用非线性Rayleigh表面波检测方法,实现了不同疲劳阶段下钢试样拉伸和腐蚀疲劳损伤的测试与评价;基于楔块\换能器激发与接收声波方式,搭建非线性Rayleigh波检测系统,测量了不同激励水平下基波幅值平方与二次谐波幅值间的线性关系以及Rayleigh表面波二次谐波的累积效应;分别在拉伸载荷和腐蚀疲劳载荷下,采集非线性时域信号并进行频谱分析,测量声学非线性系数在不同疲劳阶段下变化趋势,并分析不同疲劳载荷对钢试样声学非线性系数的影响。实验结果表明:超声非线性系数与疲劳周期数呈单调递增关系,可以用声学非线性系数来表征材料的表面疲劳损伤程度;相比较周期性拉伸疲劳损伤,腐蚀疲劳试样的声学非线性系数会增大,是由于腐蚀环境会加重实验中钢试样的疲劳损伤程度。研究成果可为疲劳损伤无损检测与评价提供一定的指导意义。  相似文献   

9.
The application of a relatively new, thin-film bondable transducer, commercially available under the name KRAK-GAGE®2, was evaluated for corrosion fatigue crack propagation tests in a sea water (3.5%NaCl) environment at ambient temperature on an HY 80 steel. Fatigue crack growth data generated by this method are shown to be consistent with those obtained by the compliance method and the commonly used optical/visual measurements. Thus, this new instrumentation system appears to be a valuable addition for corrosion fatigue crack growth testing. Furthermore, test data acquisition and analysis of the KRAK-GAGE and the compliance method were computer automated, which results in considerable cost savings for such customarily labor intensive fatigue crack propagation experiments. Additionally, the FRAC-TOMAT/KRAK-GAGE instrumentation system can be utilized for direct test machine control, permitting completely automated fatigue crack growth testing.  相似文献   

10.
文中研究了35CrMo 及40CrNiMo 钢淬火不同温度回火时,在3.5%NaCl 盐雾介质中的腐蚀疲劳行为以及35CrMo 钢在3.5%NaCl 水溶液,0.1NHCl+3.5%NaCl 水溶液和空气中的腐蚀疲劳行为。结果表明,40CrNiMo 钢随回火温度升高,盐雾介质中腐蚀疲劳抗力增加,裂纹止裂倾向也增大。5.5Hz 时随介质的 pH 值降低,裂纹扩展加速。电镜断口观察表明,盐水介质腐蚀疲劳是以氢脆机制为主,盐雾介质疲劳是以阳极溶解机制为主。  相似文献   

11.
This paper provides a composites engineering approach to explain the stress corrosion behaviour of high-strength prestressing steel wires. To this end, two eutectoid steels in the form of hot rolled bar and cold drawn wire were subjected to slow strain rate tests in aqueous environments in corrosive conditions corresponding to localized anodic dissolution and hydrogen assisted cracking. While a tensile crack in the hot rolled bar always propagates in mode I, in the cold drawn wire an initially mode I crack deviates significantly from its normal mode I growth plane and approaches the wire axis or cold drawing direction, thus producing a mixed mode propagation. In hydrogen assisted cracking the deviation happens just after the fatigue pre-crack, whereas in localized anodic dissolution the material is able to undergo mode I cracking before the deflection takes place. Therefore, a different behaviour is observed in both steels and even in the same steel under distinct environmental conditions. An explanation of such behaviour can be found in the pearlitic microstructure of the steels. This microstructural arrangement is randomly-oriented in the case of the hot rolled bar and markedly oriented under the wire axis direction in the case of the cold drawn wire. Thus both materials behave as composites at the microstructural level and their plated structure (oriented or not) would explain the different time-dependent behaviour in a corrosive environment.  相似文献   

12.
The aim of this research was to study the stability of plasma-sprayed eoated metal systems and to evaluate their susceptibility to the occurrence of corrosion fatigue. Hydroxylapatite plasma-sprayed coated samples of Ti–6AI–4V were studied under cyclic bending. During fatigue testing samples were immersed in a simulated physiological solution and mechanical and electrochemical degradation were monitored. Applied loads were intended to crack the ceramic coating and not the metal substrate. Electrochemical impedance spectroscopy was used to further characterize the electrochemical behaviour. No increase in tendency to corrode was detected in open-circuit corrosion fatigue testing. It appears as if the coating cracking does not increase metal substrate corrosion susceptibility. The coating integrity has been seriously affected, with marked decrease in thickness, due to the synergistic effect of load and presence of simulated body fluids environment. Impedance results, however, show a general tendency to an increase in corrosion kinetics after corrosion fatigue testing.  相似文献   

13.
In this two-part paper, the thermomechanical fatigue of TiNiCu shape memory alloy (SMA) wire actuators undergoing thermally induced martensitic phase transformation in a corrosive environment is investigated. The main objective of this work is to evaluate the cyclic response and fatigue behavior of TiNiCu SMA wire under corrosive conditions and to compare it to results obtained for fatigue testing in a corrosion-free environment. Part I focuses on the various experimental aspects of this work, including the presentation of fatigue results as a function of various testing parameters. The variable test parameters are five applied stress levels from about 50 MPa to about 250 MPa, and two different actuation strains, one corresponding to full actuation or complete transformation and the other to partial transformation. The results from fatigue testing in a corrosive environment show a consistent reduction of the fatigue life compared to corrosion-free fatigue results, in both complete and partial transformation conditions. It is also observed that corrosion-assisted fatigue leads to more scattered fatigue data and this spread is mostly attributed to enhanced and accelerated damage mechanisms due to corrosion. From these conclusions, a microstructure evaluation is performed to understand the damage that contributes to lower fatigue limits under corrosion and is presented in Part II of this work. Fracture surfaces, development of fatigue cracks and effect of corrosion are presented and discussed. The conclusion from the microstructure analysis has led to the formulation of a damage accumulation model accounting for a cyclic corrosion mechanism. This modeling approach allows for determining the fatigue life reduction of SMA wire actuators in a corrosive environment. All results of the microstructure analysis and fatigue life modeling are presented in Part II.  相似文献   

14.
Abstract— Single-pitted specimens of an HSLA steel, were tested in laboratory air and in 1 M NaCl solution to study the influence of a corrosive environment on its fatigue life.
The growth of fatigue cracks and the partitioning of the fatigue life into fatigue crack initiation and fatigue crack propagation were studied by photographing the pit and the cracks developing on it periodically during testing. Non-propagating or dormant surface cracks were not observed in this study. Fractography using SEM showed the locations of fatigue crack initiation. The mechanisms of corrosion fatigue were studied by performing tests in 1 M NaCl at different test frequencies. Corrosion pits proved to be crack initiation sites. Hydrogen embrittlement was found to be unimportant in the corrosion fatigue of HSLA steel in this study. The 1 M NaCl corrosive environment appeared to reduce the fatigue life of this material by a dissolution mechanism. The effect of pit depth was studied by testing specimens having various pit depths. An effect of pit size was apparent. Fatigue life decreased with increasing pit depth. Pit depth, rather than the ratio of pit depth to pit diameter, influenced fatigue behaviour. A non-damaging pit depth was found.  相似文献   

15.
This paper describes procedures for predicting the growth rate of fatigue cracks in ship structure welds under sea-wave loading as well as the stress corrosion cracking behaviour of steel in marine structures. A computer program which can be applied to assess the residual life-time and to estimate the probability of failure of marine structures under wave action is presented. The main objective of applying this program is the development of an optimal inspection and maintenance policy for marine structures. Moreover, the presented computer program is of value to insurance companies in order to assess the safety level of a marine structure and consequently to estimate their financial risk.  相似文献   

16.
Influence of a corrosive environment on the fatigue life of cyclic loaded structures Fatigue life of structural components in practice is effected by corrosive environments, too. The failure mainly is caused by the interaction of cyclic straining and corrosive attack. Extensive research and test programmes during the last two decades had been carried out to investigate the parameters influencing corrosion fatigue. Results of the most effective parameters on corrosion fatigue are given in the present paper. The amount of degrading effect on fatigue properties depends on the susceptibility of the material to corrosive environment, the structural shape and the environment itself. The various parameters determing fatigue behaviour are superimposed in a synergistic manner, so their effects cannot simply be added. That may be the reason for very different conclusions on the effect of corrosion on fatigue life from ?disastrous”? to ?neglegible”?. Though there is still a number of unclear points, the good agreement of results of welded specimens (V-shaped specimens) and welded tubular joints indicates a positive outlook for the application of small specimen corrosion fatigue data for the design of structural components.  相似文献   

17.
In situ atomic force microscope (AFM) imaging of the fatigue and stress corrosion (SC) crack in a high‐strength stainless steel was performed, under both static and dynamic loading. The AFM systems used were (1) a newly developed AFM‐based system for analysing the nanoscopic topographies of environmentally induced damage under dynamic loads in a controlled environment and (2) an AFM system having a large sample stage together with a static in‐plane loading device. By using these systems, in situ serial clear AFM images of an environmentally induced crack under loading could be obtained in a controlled environment, such as in dry air for the fatigue and in an aqueous solution for the stress corrosion cracking (SCC). The intergranular static SC crack at the free corrosion had a sharp crack tip when it grew straight along a grain boundary. The in situ AFM observations showed that the fatigue crack grew in a steady manner on the order of sub‐micrometre. The same result was obtained for the static SC crack under the free corrosion, growing straight along a grain boundary. In these cases, the crack tip opening displacement (CTOD) remained constant. However, as the static SC crack was approaching a triple grain junction, the growth rate became smaller, the CTOD value increased and the hollow ahead of the crack tip became larger. After the crack passed through the triple grain junction, it grew faster with a lower CTOD value; the changes in the CTOD value agreed with those of the crack growth rate. At the cathodic potential, the static SC crack grew in a zigzag path and in an unsteady manner, showing crack growth acceleration and retardation. This unsteady crack growth was considered to be due to the changes in the local hydrogen content near the crack tip. The changes in the CTOD value also agreed with those of the crack growth rate. The CTOD value in the corrosive environment was influenced by the microstructure of the material and the local hydrogen content, showing a larger scatter band, whereas the CTOD value of the fatigue crack in dry air was determined by the applied stress intensity factor, with a smaller scatter band. In addition, the CTOD value in the corrosive environment under both static and dynamic loading was smaller than that of the fatigue crack; the environmentally induced crack had a sharper crack tip than the fatigue crack in dry air.  相似文献   

18.
Abstract— Fatigue tests conducted under fully reversed cyclic torsion, with and without superimposed axial static tension/compression loads, were carried out using hour-glass smooth specimens in laboratory air. A high strength spring steel and a 316L stainless steel, were employed to evaluate the effects of mean stress on fatigue performance. Experimental test results show that a biaxial tensile/compressive mean stress had no influence on the cyclic stress-strain response in both materials. However a biaxial tensile mean stress was found to be detrimental to fatigue life of the high strength spring steel but had no effect on the total fatigue life of 316L stainless steel. A compressive mean stress was found to be beneficial to the life of both steels. The fatigue behaviour of the two materials was investigated by experimental observations and the application of theoretical analyses of short crack growth behaviour. Based upon the analysis of surface acetate replicas it has been found that fatigue crack growth is material/stress-state dependent. A biaxial tensile static stress promoted a change in the direction of the Stage I (mode II) crack from the longitudinal direction to a plane normal to the specimen axis in the high strength steel but not in the stainless steel. Consequently a different growth behaviour of Stage I (mode II) cracks was observed for the two materials. The effect of a biaxial mean stress on fatigue crack growth behaviour of the two materials is analysed and described in some detail.  相似文献   

19.
Conjoint Action of Stress Corrosion Cracking and Fatigue on Corrosion Fatigue of a High Strength Steel The corrosion fatigue characteristics of a high strength, martensitic steel in 0.5 n NaCl solution is investigated with regard to the fatigue and stress corrosion cracking behaviour of the material. Test parameters are stress ratio and frequency, testing is carried out with fracture mechanics methods, the crack surfaces are examined fractographically. An analysis of the results reveals that corrosion fatigue in high strength steel is caused by fatigue or by stress corrosion cracking, depending on the kinetics of the two processes. Fatigue and stress corrosion cracking do not act cumulative or additive. Instead, the kinetically faster process causes crack advance. The crack growth characteristics are interpreted with respect to the fractographic appearance of the crack surfaces. Corrosion fatigue cracks propagate either intergranular relative to the prior austenite grain boundaries as stress corrosion cracks do or transgranular like fatigue cracks, depending on the crack growth rates of the two processes. Fatigue and stress corrosion cracking do not interact, at least in a measurable degree, because of the different crack path of the two fracture processes. Results can be assessed quantitatively with the “process competition model”.  相似文献   

20.
Abstract— Basic diagrams of the cyclic crack growth resistance of two of the most investigated titanium alloys, namely Ti-6A1–4V and Ti-6A1–6V-2Sn, are presented. Diagrams are plotted for, in-air, distilled water and 3.5% NaCl solution, which are necessary for lifetime calculations of structural elements made of these metals. The dependency of cyclic crack growth resistance on the yield strength is established. It is shown that cyclic crack growth resistance of titanium alloys in corrosive environments is determined not only by the stress-strain state but also by the electrochemical conditions at the corrosion fatigue crack tip, which for aqueous environments can be characterized integrally by the hydrogen index of the environment and the electrode potential of the metal. Therefore, cyclic corrosion crack growth resistance testing should be performed under constant electrochemical conditions at the corrosion fatigue crack tip or these conditions should be taken into account. A new method of plotting the basic cyclic corrosion crack growth resistance diagrams of titanium alloys is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号