首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The apical ectodermal ridge (AER), a rim of thickened ectodermal cells at the interface between the dorsal and ventral domains of the limb bud, is required for limb outgrowth and patterning. We have previously shown that the limbs of En1 mutant mice display dorsal-ventral and proximal-distal abnormalities, the latter being reflected in the appearance of a broadened AER and formation of ectopic ventral digits. A detailed genetic analysis of wild-type, En1 and Wnt7a mutant limb buds during AER development has delineated a role for En1 in normal AER formation. Our studies support previous suggestions that AER maturation involves the compression of an early broad ventral domain of limb ectoderm into a narrow rim at the tip and further show that En1 plays a critical role in the compaction phase. Loss of En1 leads to a delay in the distal shift and stratification of cells in the ventral half of the AER. At later stages, this often leads to development of a secondary ventral AER, which can promote formation of an ectopic digit. The second AER forms at the juxtaposition of the ventral border of the broadened mutant AER and the distal border of an ectopic Lmx1b expression domain. Analysis of En1/Wnt7a double mutants demonstrates that the dorsalizing gene Wnt7a is required for the formation of the ectopic AERs in En1 mutants and for ectopic expression of Lmx1b in the ventral mesenchyme. We suggest a model whereby, in En1 mutants, ectopic ventral Wnt7a and/or Lmx1b expression leads to the transformation of ventral cells in the broadened AER to a more dorsal phenotype. This leads to induction of a second zone of compaction ventrally, which in some cases goes on to form an autonomous secondary AER.  相似文献   

2.
3.
Several members of the Wnt family of secreted factors are strongly implicated as regulators of mammary cell growth and differentiation. To investigate Wnt signaling in mammary cells, we have assessed the abilities of 10 different Wnt genes to cause transformation of C57MG mammary epithelial cells and in parallel studied their effects on beta-catenin, a component of the Wnt-1 signaling pathway. Autocrine transforming potential was tested by expression of Wnt proteins in C57MG cells, and paracrine effects were evaluated by coculture of C57MG cells with fibroblasts secreting different Wnt proteins. Western blotting confirmed the expression of each Wnt protein in the relevant cell lines. Activities of the 10 Wnts tested were divisible into three groups. Wnt-1, Wnt-2, Wnt-3, and Wnt3a induced strong transformation and an elongated refractile cell morphology. Wnt-6 and Wnt-7a produced weak morphological changes. Wnt-4, Wnt-5a, Wnt-5b, and Wnt-7b had no effect at all on C57MG morphology. Analysis of beta-catenin levels showed that the transforming Wnts induced accumulation of cytosolic beta-catenin, whereas nontransforming Wnts did not. These result demonstrate that several Wnt family members are capable of elevating beta-catenin levels and suggest that their signaling pathways share intracellular signaling components. The correlation between increased cytosolic beta-catenin levels and C57MG transformation supports a role for beta-catenin in transformation of these cells. These data also imply the existence of receptors that respond to certain Wnt proteins but not to others.  相似文献   

4.
5.
6.
The apical ectodermal ridge (AER) is a specialized thickening of the distal limb ectoderm, and its signals are known to support limb morphogenesis. The expression of a homeobox gene, Msx1, in the distal limb mesoderm depends on signals from the AER. In the present paper it is reported that Msx1 expression in the distal mesoderm is necessary for the transfer of AER signals in chick limb buds. Interruption of AER-mesoderm interaction by insertion of a thick filter led to the inhibition of pattern specification in the mesoderm just under the filter. In such cases, the expression of Msx1 disappeared in the mesoderm under the filter, suggesting that AER is able to signal over short ranges. In advanced limb buds, Msx1 is also expressed in the proximal mesoderm under the anterior ectoderm. However, it was found that a grafted antero-proximal mesoderm shows no inhibitory effects on pattern specification of the host mesoderm, as is the case with the distal mesoderm. On the other hand, grafted mesoderms without potent Msx1 re-expression, even underneath AER, disturbed normal limb development. In such cases, the expression of Msx1 disappeared in the mesoderm under the grafts, whereas Fgf-8 expression was maintained in the AER above the graft. These results indicate that the expression of Msx1 in the mesoderm is important for the transfer of AER signals.  相似文献   

7.
8.
9.
BACKGROUND: The Wnt/Wingless signalling pathway plays an important role in both embryonic development and tumorigenesis. Beta-catenin and Axin are positive and negative effectors of the Wnt signalling pathway, respectively. RESULTS: We found that Axin interacts with beta-catenin and glycogen synthase kinase-3beta (GSK-3beta). Furthermore, the regulation of the G-protein signalling (RGS) domain of Axin is associated with the colorectal tumour suppressor adenomatous polyposis coli (APC). Overexpression of Axin in the human colorectal cancer cell line SW480 induced a drastic reduction in the level of -catenin. Interaction with beta-catenin and GSK-3beta was required for the Axin-mediated beta-catenin reduction. CONCLUSION: Axin interacts with beta-catenin, GSK-3beta and APC, and negatively regulates the Wnt signalling pathway, presumably by regulating the level of beta-catenin.  相似文献   

10.
Beta-catenin is a pivotal player in the signaling pathway initiated by Wnt proteins, mediators of several developmental processes. beta-catenin activity is controlled by a large number of binding partners that affect the stability and the localization of beta-catenin and is thereby able to participate in such varying processes as gene expression and cell adhesion. Activating mutations in beta-catenin and in components regulating its stability can contribute to the formation of certain tumors.  相似文献   

11.
12.
During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER.  相似文献   

13.
14.
The formation of the digits in amniote vertebrates is accompanied by a massive degeneration process that accounts for the disappearance of the interdigital mesenchyme. The establishment of these areas of interdigital cell death (INZs) is concomitant with the flattening of the apical ectodermal ridge (AER), but a possible causal relationship between these processes has not been demonstrated. Recent studies have shown that the function of the AER can be substituted for by implantation of beads bearing either FGF-2 or FGF-4 into the apical mesoderm of the early limb bud. According to these observations, if the onset of INZs is triggered by the cessation of the AER function, local administration of FGFs to the interdigital tissue prior to cell death should delay or inhibit interdigit degeneration. In the present study we have confirmed this prediction. Implanting Affi-gel blue or heparin beads pre-absorbed with either FGF-2 or FGF-4 into the interdigital tissue of the chick leg bud in the stages prior to cell death stimulates cell proliferation and causes the formation of webbed digits. Vital staining with neutral red confirmed an intense temporal inhibition of interdigital cell death after FGF treatment. This inhibition of interdigital cell death was not accompanied by modifications in the pattern of expression of Msx-1 or Msx-2 genes, which in normal development display a domain of expression in the interdigital tissue preceding the onset of degeneration.  相似文献   

15.
Dorsal accumulation of beta-catenin in early Xenopus embryos is required for body axis formation. Recent evidence indicates that beta-catenin is dorsally stabilized by the localized inhibition of the kinase Xgsk-3, utilizing a novel Wnt ligand-independent mechanism. Using a two-hybrid screen, we identified GBP, a maternal Xgsk-3-binding protein that is homologous to a T cell protooncogene in three well-conserved domains. GBP inhibits in vivo phosphorylation by Xgsk-3, and ectopic GBP expression induces an axis by stabilizing beta-catenin within Xenopus embryos. Importantly, antisense oligonucleotide depletion of the maternal GBP mRNA demonstrates that GBP is required for the establishment of the dorsal-ventral axis in Xenopus embryos. Our results define a family of GSK-3-binding proteins with roles in development and cell proliferation.  相似文献   

16.
The Wnt family of secreted signaling proteins are implicated in regulating morphogenesis and tissue patterning in a wide variety of organ systems. Several Wnt genes are expressed in the developing limbs and head, implying roles in skeletal development. To explore these functions, we have used retroviral gene transfer to express Wnt-1 ectopically in the limb buds and craniofacial region of chick embryos. Infection of wing buds at stage 17 and tissues in the head at stage 10 resulted in skeletal abnormalities whose most consistent defects suggested a localized failure of cartilage formation. To test this hypothesis, we infected micromass cultures of prechondrogenic mesenchyme in vitro and found that expression of Wnt-1 caused a severe block in chondrogenesis. Wnt-7a, a gene endogenously expressed in the limb and facial ectoderm, had a similar inhibitory effect. Further analysis of this phenomenon in vitro showed that Wnt-1 and Wnt-7a had mitogenic effects only in early prechondrogenic mesenchyme, that cell aggregation and formation of the prechondrogenic blastema occurred normally, and that the block to differentiation was at the late-blastema/early-chondroblast stage. These results indicate that Wnt signals can have specific inhibitory effects on cytodifferentiation and suggest that one function of endogenous Wnt proteins in the limbs and face may be to influence skeletal morphology by localized inhibition of chondrogenesis.  相似文献   

17.
18.
19.
Dactylaplasia, or Dac, was recently mapped to the distal portion of mouse chromosome 19 and shown to be inherited as an autosomal semi-dominant trait characterized by missing central digital rays. The most common locus for human split hand split foot malformation, also typically characterized by missing central digital rays, is 10q25, a region of synteny to the Dac locus. The Dac mouse appears to be an ideal genotypic and phenotypic model for this human malformation syndrome. Several genes lie in this region of synteny, however, only Fibroblast Growth Factor 8, or Fgf-8, has been implicated to have a role in limb development. We demonstrate that the developmental mechanism underlying loss of central rays in Dac limbs is dramatic cell death of the apical ectodermal ridge, or AER. This cell death pattern is apparent in E10.5-11.5 Dac limb buds stained with the supravital dye Nile Blue Sulfate. We demonstrate that Fgf8 expression in wild type limbs colocalizes spatially and temporally with AER cell death in Dac limbs. Furthermore, in our mapping panel, there is an absence of recombinants between Fgf-8 and the Dac locus in 133 backcross progeny with a median linkage estimate of approximately 0.5 cM. Thus, our results demonstrate that cell death of the AER in Dac limbs silences the role of the AER as key regulator of limb outgrowth, and that Fgf-8 is a strong candidate for the cause of the Dac phenotype.  相似文献   

20.
Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号