首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Microwave dielectric ceramics of Ba5Nb4−xVxO15 (x = 0-1) were prepared by a solid-state reaction method. Vanadium substitution can markedly lower the sintering temperature of Ba5Nb4O15 from 1450 to 1100 °C. The X-ray powder diffraction analysis reveals the multiphase nature of this system. A hexagonal-to-orthorhombic phase transition was also observed for the BaNb2O6 secondary phase. The microwave dielectric properties, such as τf, εr and Q × f value, decreased with increasing vanadium content for samples sintered at 1100 °C. There was an apparent increase in τf and Q × f value for samples (x ≥ 0.5) sintered at 1200 °C due to the hexagonal-to-orthorhombic phase transition of the BaNb2O6 phase. These results suggested that the microwave dielectric properties of multiphase ceramics strongly depended on the phase compositions and the phase transitions.  相似文献   

2.
A3B8O21 hexagonal perovskite-like Ba3Ti4Nb4O21 ceramics were synthesized by a conventional solid-state reaction technique, which exhibit high dielectric constant at room temperature. A high-temperature dielectric relaxation was observed in frequency range from 40 Hz to 1 MHz above the Curie temperature. The real and imaginary parts of the impedance (Z′ and Z″) as functions of frequency indicate the presence of two relaxation processes at high temperatures, which are attributed to grain and grain boundary responses. The conductivities of both grain and grain boundary obey the Arrhenius law with activation energies of 1.04 eV and 1.27 eV, respectively. The dielectric relaxation processes are related to the oxygen vacancies inside the ceramic, indicating that the Q × f value of Ba3Nb4Ti4O21 might be improved via eliminating oxygen vacancies.  相似文献   

3.
Low-loss Mg1.8Ti1.1O4 ceramics were prepared by the conventional solid-state route and their microwave dielectric properties were investigated for the first time. The forming of tetragonal-structured Mg1.8Ti1.1O4 main phase associated with a second phase MgTiO3 were confirmed by the X-ray diffraction patterns. However, the presence of the second phase would cause no significant variance in the dielectric properties of the specimen because the second phase properties are very similar to that of the main phase. A fine combination of microwave dielectric properties (?r ∼ 15.74, Q × f ∼ 141,000 GHz at 10.57 GHz, τf ∼ − 52.4 ppm/°C) was achieved for Mg1.8Ti1.1O4 ceramics sintered at 1450 °C for 4 h.  相似文献   

4.
Two new cation-deficient hexagonal perovskites Ba4LaMNb3O15 (M = Ti, Sn) ceramics were prepared by high temperature solid-state reaction route. The phase and structure of the ceramics were characterized by X-ray diffraction, scanning electron microscopy (SEM). The microwave dielectric properties of the ceramics were studied using a network analyzer. The Ba4LaTiNb3O15 has high dielectric constant of 52, high quality factors (Q) 3500 (at 4.472 GHz), and temperature variation of resonant frequency (τf) +93 ppm °C−1 at room temperature; Ba4LaSnNb3O15 has dielectric constant of 39 with high Q value of 2510 (at 5.924 GHz), and τf −29 ppm °C−1.  相似文献   

5.
Phase-singular Mg4Al2Ti9O25 ceramics with the pseudobrookite structure suitable for microwave devices such as antenna substrate have been prepared by gel-carbonate method with the dielectric permittivity of 24.7 (at 2-8 GHz), Q-values > 30,000 and temperature coefficients in permittivity (TCK) of less than + 17 ppm K− 1. The dielectric characteristics are accountable in terms of ordering in the cation sub-lattice.  相似文献   

6.
(Ba0.32Sr0.68)5Nb4O15 crystal with sizes of Ø 17 × 35 mm was grown successfully by Czochralski technique method. The thermal anisotropy was discussed. The principal coefficients of thermal expansion along (100), (010), (001) directions were precisely measured to be 1.308 × 10− 5, 1.288 × 10− 5, 1.478 × 10− 5 K− 1, respectively. Its optical transparency range has been measured and found to span from 323 to 5500 nm. The bands present in the IR spectra were identified and assigned to the corresponding vibration modes of NbO6 anions.  相似文献   

7.
Single crystals of two niobates, KBa2Nb5O15 and LaK2Nb5O15, were synthesized by high-temperature reaction and the crystal structures were determined by single crystal X-ray diffraction data. Although the space groups for these compounds were different (the non-centrosymmetrical space group P4bm (#100) for KBa2Nb5O15 and the centrosymmetrical one P4/mbm (#127) for LaK2Nb5O15), both compounds had the same tetragonal tungsten bronze-type (hereafter TTB-type) structure. The lattice parameters and R-factors of KBa2Nb5O15 (LaK2Nb5O15) were a = 12.533(2) (12.563(2)) and c = 4.0074(9) (3.9179(9)) Å, and R1 = 0.040 (0.047) and wR2=0.131 (0.120), respectively. From the crystal structural analysis, it was clarified that distribution of two large cations was different from each other in the way that K and Ba atoms in KBa2Nb5O15 were distributed statistically at two crystallographic sites and K and La atoms in LaK2Nb5O15 were ordered.  相似文献   

8.
Co2O3 doped BaWO4-Ba0.5Sr0.5TiO3 composite ceramics, prepared by solid-state route, were characterized systematically, in terms of their phase compositions, microstructure and microwave dielectric properties. Doping of Co2O3 promoted grain growth, reduced Curie temperature and broadened phase-transition temperature range of BaWO4-Ba0.5Sr0.5TiO3, which were attributed mainly to the substitution of Co3+ for Ti4+ at B site in the perovskite lattice. Dielectric diffusion behaviors of the composite ceramics were discussed. The composite ceramics all had dielectric tunability of higher than 10% at 30 kV/cm and 10 kHz, with promising microwave dielectric properties. Specifically, the sample doped with 0.2 wt.% Co2O3 exhibited a tunability of 20%, permittivity of 225 and Q of 292 (at 1.986 GHz), making it a suitable candidate for applications in electrically tunable microwave devices.  相似文献   

9.
10.
The structural properties of a potassium lithium niobate (KLN; K3Li2Nb5O15) thin film deposited by rf-magnetron sputtering on a Pt/Ti/SiO2/Si(100) substrate were investigated. The crystalline structures of the Pt under layer and KLN thin films were examined using θ-2θ, θ-rocking, and mesh scan X-ray diffraction (XRD). The XRD results revealed that the Pt under layer was a strong (111) direction orientated poly crystal. Unlike the Pt under layer film, the KLN(001) peak was found to consist of two separate peaks, one with a broad full width half maximum (FWHM) and the other with a narrow FWHM, indicating that the KLN film had a single crystalline structure. The surface and cross-section morphology were investigated using a scanning electron microscope (SEM). Accordingly, from the results of the SEM and XRD experiments, it was concluded that the KLN film was composed of small single crystals, which had a four-fold symmetry morphology with a c-axis normal to the substrate.  相似文献   

11.
Effects of Ca and Zr substitution upon the dielectric properties of Ba5LaTi3Ta7O30 ceramics were investigated together with the structural characterization. All the samples of Ba5La(ZrxTi1−x)3Ta7O30 formed a filled tungsten-bronze structures, whereas the solid solution limit was determined as x=0.25 in (CaxBa1−x)5LaTi3Ta7O30. Beyond this limit secondary phase of CaTa2O6 was detected and it would become the major phase for the Ca-rich compositions. The temperature coefficient of dielectric constant was improved with increasing Zr content while the dielectric constant decreased and the low dielectric loss varied little (in the order of 10−4). In the case of (CaxBa1−x)5LaTi3Ta7O30, small temperature coefficient of dielectric constant could be obtained with increasing Ca content while the dielectric constant decreased significantly, and a small amount substitution of Ca for Ba induced decrease in dielectric loss.  相似文献   

12.
Ba6FeNb9O30 ceramics were synthesized by a standard solid-state sintering process. X-ray powder diffraction (XRD) refinements were carried out to analyze the crystal structure, and the dielectric, ferroelectric and magnetic properties were investigated and discussed. The tetragonal tungsten bronze structure in space group P4bm was determined with the lattice parameters: a = 12.597(6) ?, b = 12.597(6) ?, c = 3.989(1) ?. An extremely high dielectric constant was indicated at higher temperatures, and it dropped quickly when the sample was cooled down through a critical temperature, and this critical temperature showed strong frequency dependence. This dielectric relaxation was more obviously observed in the dielectric loss curve. The nonlinear magnetic hysteresis curve was observed in the present ceramics at 5 K, which was related to the magnetic ions (Fe3+) in tungsten bronze structure.  相似文献   

13.
The suitable choice of a substrate material is one of the aims to be fulfilled in high speed microwave technology. LaMgAl11O19 oxide ceramic material, which belongs to the magnetoplumbite family, has been reported earlier as a potential candidate for such applications. This material has been prepared by conventional solid-state ceramic route. The structure has been studied by X-ray diffraction and characterized at microwave frequencies. The effect of dopant and glass addition on the microwave dielectric properties of this material has also been investigated. LaMgAl11O19 has relatively low dielectric constant (εr=14), low dielectric loss or high quality factor (Qu×f>28,000 GHz at 7 GHz) and small temperature variation of resonant frequency (τf=−12 ppm/°C) at room temperature (300 K). These properties make LaMgAl11O19 as a good substrate material and as a dielectric resonator to be used in microwave devices operating at relatively high frequencies.  相似文献   

14.
The effect of CuO addition on the microstructures and the microwave dielectric properties of MgTa2O6 ceramics has been investigated. It is found that low level-doping of CuO (up to 1 wt.%) can significantly improve the density of the specimens and their microwave dielectric properties. Tremendous sintering temperature reduction can be achieved due to the liquid phase effect of CuO addition observed by scanning electronic microscopy (SEM). The sintered samples exhibit excellent microwave dielectric properties, which depend upon the liquid phase and the sintering temperature. With 0.5 wt.% CuO addition, MgTa2O6 ceramic can be sintered at 1400 °C and possesses a dielectric constant (r) of 28, a Q × f value of 58000 GHz and a temperature coefficient of resonant frequency (τf) of 18 ppm/°C.  相似文献   

15.
Ba0.8Sr0.2TiO3 ceramics doped with Y2O3 from 0 to 0.10 mol% exhibit normal ferroelectric phase transition, while the ceramics doped with Y2O3 from 0.20 to 0.30 mol% show a giant dielectric constant behavior with loss less than 0.15 at 1 kHz from −40 °C to 140 °C, which is suggested due to semiconductive grain and the Maxwell–Wagner effect by structure disordering in grain boundary. The analyses of unipolar charge for the semiconductive grain indicate three kinds of dielectric processes: thermally stimulated process of unipolar hopping, dispersion process of dielectric constant with frequency, and phase transition process accompanied with disappearance of giant dielectric constant in cubic phase. The XPS results confirm that some of the barium ions are in low energy state to form e-Ba2+ and to provide hopping sites for electrons. The ceramics doped with Y2O3 from 0.50 to 0.75 mol% recover the normal ferroelectricity. The possible mechanics are relevant to binding effect of cation vacancies on electrons.  相似文献   

16.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

17.
邢晓旭  郝素娥 《功能材料》2004,35(Z1):1311-1314
采用溶胶凝胶法制备了掺杂不同量Dy2O3(掺杂摩尔分数分别为0.001,0.002,0.003,0.005,0.007)的BaTiO3陶瓷,并对其介电性能的变化进行了研究.结果表明Dy2O3掺杂使BaTiO3陶瓷的电阻率明显降低,当添加量为0.005mol时,电阻率最小,为4.19×108Ω·m.Dy2O3掺杂使BaTiO3陶瓷的介电性能在不同掺杂量和不同频率下发生了明显变化,掺杂量为0.001mol、0.002mol时,BaTiO3陶瓷的介电特性和频率特性得到明显改善,在频率为1000Hz时介电性能相对较好.Dy2O3掺杂使BaTiO3陶瓷的介电温谱有所展宽,且Curie温度有所降低,交流电导随着温度的升高而增大,并在Curie点附近达到最高.  相似文献   

18.
19.
Microwave dielectric properties of Ba6−3xSm8+2xTi18O54 (x = 2/3) [BST] ceramics with the addition of 0–3 wt.% of various glasses have been studied. It has been found that the addition of 0.5 wt.% of the glasses decreases the sintering temperature by about 150 °C. In general, addition of 0.5 wt.% of Zn, Mg and Pb-based glasses deteriorate the quality factor, whereas aluminum and barium borosilicates do not decrease it considerably. The quality factor and dielectric constant decrease with increasing amount of glass. The temperature coefficient of resonant frequency shifts towards positive or negative depending on the composition of the glass. A glass–ceramic composite with a dielectric constant 64, Q × f nearly 8500 GHz and near to zero τf could be obtained at a sintering temperature of 1175 °C when 3–4 wt.% Al2O3–B2O3–SiO2 glass was added to BST ceramic. The Young's modulus decreases with increasing amount of glass, irrespective of the composition of glass.  相似文献   

20.
Bi1.5Zn1.0Nb1.5O7 (BZN)/Ba0.5Sr0.5TiO3 (BST) thin films were prepared on Pt/Ti-coated sapphire substrates by radio frequency magnetron sputtering. The specific relationship between the dielectric properties and the thickness ratio of the BZN thickness to the BST thickness was investigated. The presence of BZN films effectively reduced the dielectric loss of the thin films. The thickness-ratio-dependent dielectric constant and dielectric loss behaviors were in good accordance with the simulation results based on the series connection theory. The optimum thickness ratio was determined to be around 0.5, exhibiting a maximum commutation quality factor of about 16,000. The built-in electric field at the region near the BZN–BST interface may be responsible for the asymmetric characteristic of the electric-field-dependent dielectric properties of the BZN/BST thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号