首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correlation of microstructure with the hardness and wear resistance of (TiC,SiC)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation was investigated in this study. The mixtures of TiC, SiC, or TiC + SiC powders and CaF2 flux were placed on a Ti-6Al-4V substrate, and then an electron beam was irradiated on these mixtures using an electron-beam accelerator. The surface composite layers of 1.2 to 2.1 mm in thickness were formed without defects and contained a large amount (up to 66 vol pct) of precipitates such as TiC and Ti5Si3 in the martensitic matrix. This microstructural modification, including the formation of hard precipitates and a hardened matrix in the surface composite layer, improved the hardness and wear resistance. Particularly in the surface composite fabricated with TiC + SiC powders, the wear resistance was greatly enhanced to a level 25 times higher than that of the Ti alloy substrate, because 66 vol pct of TiC and Ti5Si3 was precipitated homogeneously in the hardened martensitic matrix. These findings suggested that high-energy electron-beam irradiation was useful for the development of Ti-based surface composites with improved hardness and wear properties.  相似文献   

2.
This study is concerned with the correlation of microstructure and abrasive and sliding wear resistance of (TiC,SiC)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation. The mixtures of TiC, SiC, Ti + SiC, or TiC+SiC powders and CaF2 flux were deposited on a Ti-6Al-4V substrate, and then an electron beam was irradiated on these mixtures. The surface composite layers of 1.2 to 2.1 mm in thickness were homogeneously formed without defects and contained a large amount (30 to 66 vol pct) of hard precipitates such as TiC and Ti5Si3 in the martensitic matrix. This microstructural modification, including the formation of hard precipitates in the surface composite layer, improved the hardness and abrasive wear resistance. Particularly in the surface composite fabricated with TiC + SiC powders, the abrasive wear resistance was greatly enhanced to a level 25 times higher than that of the Ti alloy substrate because of the precipitation of 66 vol pct of TiC and Ti5Si3 in the hardened martensitic matrix. During the sliding wear process, hard and coarse TiC and Ti5Si3 precipitates fell off from the matrix, and their wear debris worked as abrasive particles, thereby reducing the sliding wear resistance. On the other hand, needle-shaped Ti5Si3 particles, which did not play a significant role in enhancing abrasive wear resistance, lowered the friction coefficient and, accordingly, decelerated the sliding wear, because they played more of the role of solid lubricants than as abrasive particles after they fell off from the matrix. These findings indicated that high-energy electron-beam irradiation was useful for the development of Ti-based surface composites with improved abrasive and sliding wear resistance, although the abrasive and sliding-wear data should be interpreted by different wear mechanisms.  相似文献   

3.
Ti-6Al-4V-2Ni is being considered as a composite matrix material because of its potential for a lower consolidation temperature and reduced reaction product formation compared with conventional Ti-6A1-4V. Stress/strain-rate measurements of Ti-6Al-4V-2Ni in sheet form provided data for calculation of diffusion bonding parameters required for efficient consolidation. These data were used as consolidation parameters for fabrication of SiC (SCS-6) reinforced Ti-6Al-4V-2Ni. The composite with 10.5 vol pct SiC exhibits room temperature tensile strength approximately 80 pct of that observed for conventional Ti-6Al-4V/SiC having 35 to 40 vol pct SiC. Scanning and transmission electron microscopy revealed that the fiber-matrix reaction zone is roughly one-half the thickness of that found in SiC-reinforced Ti -6A1-4V, and that it consists of TiC and Ti5Si3. Nickel does not enter into the reaction zone products, but rather promotes the formation of Ti2Ni in the matrix.  相似文献   

4.
Al-SiC p composite and Al-SiC p -C p hybrid composite coatings were produced by plasma spraying of premixed powders onto A356 alloy substrates. Four composite coatings, Al+20 vol pct SiC p , Al+20 vol pct SiC p +C p , Al+40 vol pct SiC p , and Al+40 vol pct SiC p +C p , were obtained. The dry sliding wear behavior of these coatings and pure aluminum have been studied at a sliding velocity of 1 m/s in the applied-load range of 25 to 150 N (corresponding to a normal stress of 0.5 to 3 MPa). The composite coatings had a significantly improved wear resistance over pure Al. The composite coatings with a higher SiC p content of 40 vol pct exhibited superior wear resistance than those with a lower SiC p content of 20 vol pct. The presence of graphite particles had different influences on the wear resistance, depending on the applied load. At lower loads, graphite improved the wear resistance considerably. At higher loads, the wear resistance of the hybrid composite coatings was similar to that of the composite coatings without graphite particles. At lower loads, an oxidative wear mechanism was dominant. At higher loads, delamination was a major wear mechanism. Graphite particles did not change their wear mechanism at the same applied loads.  相似文献   

5.
Wear tests on SiC whisker- and SiC particulate-reinforced 6061-T6 aluminum matrix composites (SiCw/Al and SiCp/Al), fabricated using a high pressure infiltration method, were performed in laboratory air, ion-exchanged water and a 3 pct NaCl aqueous solution using a block-on-ring type apparatus. The effects of environment, applied load, and rotational (sliding) speed on the wear prop-erties against a sintered alumina block were evaluated. Electrochemical measurements in ion-ex-changed water and a 3 pct NaCl aqueous solution were also made under the same conditions as the wear tests. A comparison was made with the properties of the matrix aluminum alloy 6061-T6. The SiC-reinforced composites exhibited better wear resistance compared with the monolithic 6061 Al alloy even in a 3 pct NaCl aqueous solution. Increase in the wear resistance depended on the shape, size, and volume fraction of the SiC reinforcement. Good correlation was obtained between corrosion resistance and corrosion wear. The ratios of wear volume due to the corrosive effect to noncorrosive wear were 23 to 83 pct, depending on the wear conditions.  相似文献   

6.
In the present work, the effect of an Mg addition on the mechanical properties of the Al-60 vol pct SiCp composites were investigated by uniaxial compression, three-point bending, impact and wear tests (composite-metal and composite-abrasive types). The composites were produced by the pressure-infiltration technique. The composition of the Al matrix was varied between 0 and 8 pct Mg. The mean diameter of the SiC particles was 23 μm. Upon addition of Mg, Mg2Si precipitated in the matrix and the amount of the porosity dramatically decreased. Mg-alloyed-matrix composites exhibited higher strength, lower toughness, and higher wear resistance than pure-Al-matrix composites. During composite-metal wear testing, wear progressed in two sequential periods (running-in and steady state). Weight loss during wear testing decreased with increasing Mg content of the matrix. The degree of improvement of abrasive resistance depended on the abrasive-grain size. Above 200 °C, the composite-abrasive wear resistance decreased with increasing test temperature for all materials.  相似文献   

7.
The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.  相似文献   

8.
Copper mold cast cylinders of (Ti0.5Cu0.25Ni0.15Sn0.05Zr0.05)100−x Mo x composites are prepared. Addition of Mo in the bulk glass-forming alloy induces the formation of a dendrite/matrix composite. For 3-mm-diameter cylinders, the matrix exhibits a homogenous ultrafine microstructure for Mo content of 2.5 at. pct, and a fine eutectic microstructure for 5 at. pct Mo. For 5-mm-diameter cylinders, the matrix exhibits a dendritic microstructure for 2.5 at. pct Mo, and exhibits a coarser eutectic microstructure for 5 at. pct Mo. Despite the formation of a dendrite/nanostructured matrix composite in the cylinders, the quenched surface layer with a nanoscale grain size dominates the deformation and fracture of the 3-mm-diameter cylinders. More than 56 vol pct quenched layer leads to a distensile fracture mode and the samples exhibit high fracture strength and high Young’s modulus but low ductility. For 5-mm-diameter cylinders, the composite microstructure becomes dominant due to its more than 64 vol pct volume fraction leading to a cone-shaped fracture surface. The samples exhibit lower yield strength and lower Young’s modulus but better ductility compared to the 3-mm-diameter cylinders. The mechanical behavior of the Mo-bearing composites strongly depends on the microstructural homogeneity and casting defects formed upon solidification.  相似文献   

9.
Correlation of microstructure with hardness and wear resistance of (CrB,MoB)/carbon steel surface composites fabricated by high-energy electron beam irradiation was investigated in this study. Three kinds of powder mixtures, i.e., 50CrB-50MgF2(flux), 50MoB-50MgF2, and 25CrB-25MoB-50MgF2 (wt pct), were placed on a plain carbon steel substrate, which was then irradiated with the electron beam. In the specimens fabricated with flux powders, the surface composite layer of 0.8 to 1.3 mm in thickness was successfully formed without defects, and contained a large amount (up to 48 vol pct) of Cr1.65Fe0.35B0.9 or Mo2FeB2 in the martensitic matrix. The hardness and wear resistance of the surface composite layer were directly influenced by the hard borides, and thus were about 3 to 7 times greater than those of the steel substrate. Particularly, in the surface composite fabricated with CrB and MoB powders, the hardness of eutectic solidification cells and martensitic matrix was very high, and borides formed a network structure along cells, thereby leading to the best hardness and wear resistance. These findings suggested that the high-energy electron beam irradiation was useful for the development of surface composites with improved hardness and wear resistance.  相似文献   

10.
A series of in-situ, deformation-processed metal matrix composites were produced by direct powder extrusion of blended constituents. The resulting composites are comprised of a metallic Ti-6Al-4V matrix containing dispersed and co-deformed discontinuously reinforced-intermetallic matrix composite (DR-IMC) reinforcements. The DR-IMCs are comprised of discontinuous TiB2 particulate within a titanium trialuminide or near-γ Ti-47Al matrix. Thus, an example of a resulting composite would be Ti-6Al-4V+40 vol pct (Al3Ti+30 vol pct TiB2) or Ti-6Al-4V+40 vol pct (Ti-47Al+40 vol pct TiB2), with the DR-IMCs having an aligned, high aspect ratio morphology as a consequence of deformation processing. The degree to which both constituents deform during extrusion has been examined using systematic variations in the percentage of TiB2 within the DR-IMC, and by varying the percentage of DR-IMC within the metal matrix. In the former instance, variation of the TiB2 percentage effects variations in relative flow behavior; while in the latter, varying the percentage of DR-IMC within the metallic matrix effects changes in strain distribution among components. The results indicate that successful co-deformation processing can occur within certain ranges of relative flow stress; however, the extent of commensurate flow will be limited by the constituents’ inherent capacity to plastically deform.  相似文献   

11.
Wear corrosion of alumina particulate-reinforced 6061 aluminum matrix composites in a 3.5 wt pct NaCl solution with a revised block-on-ring wear tester has been investigated. The studies involved the effects of applied load, rotational speed, and environments (dry air and 3.5 pct NaCl solution) on the wear rates of materials. Also various specimens with Al2O3 volume fractions of 0, 10, 15, and 20 pct were employed in this work. Electrochemical measurements and electron micrographic observations were conducted to clarify the micromechanisms of wear corrosion in such metal matrix composites. Experimental results indicated that the wear rate of monolithic 6061 Al in either dry wear or wear corrosion was reduced by adding alumina reinforcements. However, the effect of volume fraction on wear rate is only minor in dry wear, while it is significant in the case of wear corrosion. Wear-corrosion tests also showed that the corrosion potential shifted to the active side and the current density for an applied potential increased with the decrease of Al2O3 volume fraction in the materials and the increase in applied load and rotational speed. Although the incorporation of reinforcement in these aluminum matrix composites was deterimental to their corrosion resistance, the influence on wear corrosion was favorable.  相似文献   

12.
Correlation of microstructure with the hardness, wear resistance, and fracture toughness of two-layered VC/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation was investigated in this study. A mixture of VC powders and CaF2 flux was deposited on a Ti-6Al-4V substrate, and then an electron beam was irradiated on these powder mixtures to fabricate an one-layered surface composite. A two-layered surface composite was fabricated by irradiating an electron-beam again onto the powder mixture deposited on the one-layered surface composite. The composite layers of 1.2 to 1.5 mm in thickness were homogeneously formed without defects and contained a large amount (25 to 40 vol pct) of carbides in the martensitic or β-Ti matrix. This microstructural modification, including the formation of hard carbides and hardened matrix, improved the hardness and wear resistance. Particularly in the two-layered surface composite containing more carbides, the wear resistance was greatly enhanced to a level 7 times higher than that of the Ti-6Al-4V substrate. In-situ observation of the fracture process showed that microcracks were initiated at carbides and propagated along these microcracked carbides and that shear bands were formed in the matrix between these microcracks. In the two-layered surface composite, numerous microcracks were initiated at many carbides and then rapidly propagated along them, thereby lowering the fracture toughness.  相似文献   

13.
Axial, low cycle fatigue properties of 25 and 44 fiber vol pct SiC/Ti(6Al-4V) composites, measured at 650 °C, were compared with the fatigue properties of unreinforced Ti(6Al-4V) at the same temperature. A prior study of the fatigue behavior of this composite system at room temperature indicated that the SiC fiber reinforcement did not provide the anticipated improvement of fatigue resistance of this alloy. At 650 °C, the composite fatigue properties degraded somewhat from those at room temperature. However, these properties degraded more for the unreinforced matrix at 650 °C with the result that the composite fatigue strength was two to three times the fatigue strength of the matrix alloy. The reasons for this reversal are discussed in terms of crack initiation at broken fibers and residual matrix stresses.  相似文献   

14.
Shape memory properties of Ni-Ti based melt-spun ribbons   总被引:1,自引:0,他引:1  
Shape-memory properties of equiatomic NiTi, Ni45Ti50Cu5, and Ni25Ti50Cu25 ribbons made by melt spinning have been studied by temperature inducing the martensitic transformation under constant tensile loads. Recoverable strains above 4 pct can be obtained under ∼100 MPa loads for the NiTi and Ni45Ti50Cu5 ribbons, transforming to B19’ martensite. The B19 martensite is formed in the Ni25Ti50Cu25 ribbon after crystallization, and according to the lowering in transformation strain as Cu content increases, the recoverable strain is close to 2.5 pct for ∼150 MPa load. The transformation temperatures exhibit a linear dependence on the applied stress, which can be quantitatively described by means of a Clausius-Clapeyron type equation. The NiTi and Ni45Ti50Cu5 ribbons exhibited some degree of two-way shape-memory effect (TWSME) after thermomechanical cycling. Texture analyses performed on the different ribbons allow us to better understand the transformation strains obtained in each ribbon. The amounts of shape-memory effect (SME) and nonrecoverable strain shown by the studied ribbons are of the same order as those already observed in bulk materials, which makes melt spinning an ideal substitute to complicated manufacturing processes if really thin samples are needed. However, applicable stresses in melt-spun ribbons are limited by a relatively “premature” brittle fracture caused by irregularities in ribbon thickness.  相似文献   

15.
The wear behavior of A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg) matrix composites reinforced with 20 vol Pct SiC particles and 3 or 10 vol Pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X-ray diffractometry (XRD). The wear resistance of 3 Pct graphite-20 Pct SiC-A356 hybrid composite was comparable to 20 Pct SiC-A356 without graphite at low and medium loads. At loads below 20N, both hybrid and 20 Pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 Pct graphite 20 Pct SiC-A356 was 1 to 2 times higher than 10 Pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 Pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 Pct and 10 Pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites. Tribolayers, mainly consisting of a compacted mixture of graphite, iron oxides, and aluminum, were generated on the surfaces of the hybrid composites. In the hybrid composites, the elimination of the severe wear (and hence the improvement in seizure resistance) was attributed to the reduction in friction-induced surface heating due to the presence of graphite- and iron-oxide-containing tribolayers.  相似文献   

16.
17.
High-strain-rate superplastic behavior has been investigated for Si3N4p /Al-Mg-Si (6061) composites with a V f =20 and 30 pct, respectively, where V f is the volume fraction of reinforcements. A maximum elongation was attained at a temperature close to the onset temperature for melting for both composites. The maximum elongation for the 30 vol pct composite was larger than that for the 20 vol pct composite. Development of cavities transverse to the tensile direction is responsible for the lower maximum elongation of the 20 vol pct composite. However, development of the transverse cavities was limited to the optimum superplastic temperature for the 30 vol pct composite. The differential scanning calorimetry (DSC) investigation showed that a sharp endothermic peak appeared for the 30 vol pct composite, indicating that sufficient partial melting occurs. It is, therefore, likely that the stress concentrations are sufficiently relaxed by a liquid phase and that the development of transverse cavities is limited for the 30 vol pct composite.  相似文献   

18.
The aim of the present investigation is to characterize the friction and wear behavior of aluminum matrix composites reinforced with particulates of SiC, TiC, TiB2, and B4C. Sliding wear tests were conducted at two loads (80 and 160 N) using a pin-on-disc apparatus and under dry conditions. The results of the investigation indicate that the coefficient of friction of the composites is about 30 pct lower than that of pure aluminum, while the wear rates of the com- posites are lower by a factor of about 3 and 100 at loads of 80 and 160 N, respectively. The type and size of the reinforcement have a negligible influence on the wear rate and the coefficient of friction of the composites. However, the volume fraction of the reinforcement has a marginal influence on the wear rate. Though the coefficients of friction and the wear rates of the com- posites were broadly similar, the Al-TiC composite alone exhibits a somewhat higher wear rate. The above results of the present investigation have been rationalized on the basis of the inverse rule of mixtures and the existing models for friction and wear.  相似文献   

19.
The deformation behavior of TiC particulate-reinforced aluminum composites (Al-TiC p ) was investigated in this work using pure aluminum as the reference matrix material. Uniaxial compression tests were carried out at 293 and 623 K and at two strain rates (3.7×10−4 and 3.7×10−3 s−1). Yield strengths of up to 127 MPa were found in composites containing 10 vol pct TiC particulates, which were almost 4 times the yield strength of pure Al. In addition, at 623 K, relatively small reductions in yield strength were found, suggesting that this property was rather insensitive to temperature for the temperatures investigated in this work. Nevertheless, at 623 K, increasing the rate of straining from 3.7×10−4 s−1 to 3.7×10−3 s−1 lowered the yield strength, particularly in 10 vol pct TiC p -Al composites. Two stages of work hardening were identified in pure Al and a 10 vol pct TiC p composite during plastic flow through the modified version of the Hollomon equation (σ = n ± Δ). In particular, the work-hardening exponents found in pure Al shifted from high to low values as the extent of plastic strain was increased while the opposite was true for the 10 vol pct TiC p composite. Finally, at 623 K, dynamic recovery mechanisms became dominant at plastic strain levels >0.2 in 10 vol pct TiC p -Al composites, with the effect being minor at room temperature.  相似文献   

20.
High-temperature wear and deformation processes in metal matrix composites   总被引:1,自引:0,他引:1  
Dry-sliding wear behaviors of a particulate-reinforced aluminum matrix composite 6061 Al-20 pet A12O3 and an unreinforced 6061 Al alloy were investigated in the temperature range 25 °C to 500 °C against a SAE 52100 bearing steel counterface. Experiments were carried out at a constant sliding speed of 0.2 m·s- at different test loads. The deformation behavior of the materials was studied by performing uniaxial compression tests in the same temperature range as the wear tests. Both alloys showed a mild-to-severe wear transition above a certain test temperature. In the mild wear regime, the wear rate and the coefficient of friction of the unreinforced 6061 Al decreased slightly with temperature, but the temperature had almost no effect on the wear rate and the coefficient of friction of the 6061 Al-20 pet Al2O3 in the same regime. Particulate reinforcement led to an increase in the transition temperature and a 50 to 70 pet improvement in the wear resistance in the severe wear regime. This was attributed to the formation of tribological layers consisting of comminuted A12O3 particles at the contact surface. High-temperature compression tests showed that the flow strength of 6061 Al-20 pet A12O3 and 6061 Al decreased monotonically with temperature and both alloys exhibited a work-softening behavior at temperatures higher than the inflection point on the flow stressvs temperature curves. The logarithmic maximum stressvs reciprocal temperature relationship was not linear, indicating that the deformation processes were too complicated to be characterized by a single activation energy over the whole temperature range. For the range of 250 °C to 450 °C, the activation energy for deformation was estimated to be 311 kJ·mol-1; for both the matrix alloy and the composite. Severe wear proceeded by thermally activated deformation processes involving dynamic recrystallization along a subsurface strain gradient. A power-Arrhenius type relationship was found to describe well the observed dependence of severe wear rates on the applied load and temperature. This relationship was used to calculate an apparent activation energy for wear of 87 kJ·mol-1 for the particulate-reinforced composite and 33 kJ·mol-1 for the matrix alloy. The wear regimes at elevated temperatures are represented in a deformation mechanism map and the relationship between high-strain deformation processes and severe wear are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号