首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between the undrained shear strength of fine-grained soils and the water content can be described with a nonlinear function in which the type of soil is determined by two parameters. It is well known that these parameters depend mainly on the mineral compositions of soils; these relationships, however, have not yet been investigated. The findings described in this paper define those mineralogical properties of soils which determine the values of both parameters. Experimentally obtained results suggest that the parameters primarily depend on the size of the clay minerals, their quantity in soil composition, and the interlayer water quantity in the expanding clay minerals. As this dependence is well defined, the parameters, and thus the undrained shear strength at different water content, can be defined from knowledge of these mineralogical soil properties.  相似文献   

2.
Cyclic Behavior of Fine-Grained Soils at Different pH Values   总被引:4,自引:0,他引:4  
The effects of pH on the liquefaction susceptibility of fine-grained soils were examined by performing undrained cyclic ring-shear tests on artificial mixtures and a natural soil under different pH conditions. Solutions of diluted sulphuric acid (H2SO4) and dissolved sodium hydroxide (NaOH) were used to create acidic and alkaline environments, respectively, while distilled water was used as a reference liquid. Low plasticity kaolin and illite-sand mixtures and a medium plasticity bentonite-sand mixture were selected to investigate the influence of plasticity and clay mineralogy on the pH-dependent response of soil to cyclic loading. The results showed that the effects of pH were more pronounced for the medium plasticity mixture, and depended greatly on the mineralogy of clay fraction. For example, in an acidic medium, the kaolin-sand mixture became slightly more resistant to liquefaction while the illite-sand mixture became more susceptible to liquefaction. The bentonite-sand mixture was observed to be the most sensitive to changes in pH environment. While resistant to liquefaction in distilled water, it rapidly liquefied in acidic and alkaline mediums. Cyclic behavior of a medium plasticity soil, which was collected from an earthquake-induced landslide, was also affected by changes in pH. Although being overall resistant to liquefaction regardless of pH, it decreased its cyclic strength in both acidic and alkaline environments. Based on the available literature and the obtained results, an attempt was made to explain the influence of pH on the undrained cyclic behavior of fine-grained soils.  相似文献   

3.
We present a laboratory system designed for studying frost heave in fine-grained soil. The system consists of: a modified refrigerator, a frost heave test cell, a laser for measuring heave, a differential pressure transducer for measuring water intake, and platinum resistance temperature detectors for measuring pedestal temperatures. The frost heave cell allows for visual observation of the sample, and accommodates pretest sample consolidation, freezing tests using a variety of freezing methods, triaxial tests on frozen soil, and thaw consolidation tests. The modified refrigerator maintains the specified temperature ±0.5°C during the full length of the test. Test results indicate repeatability of frost heave ratios ξ to within ±7%, and average heave rates to within ±0.05?mm/h. Results from frost heave tests conducted on five fine-grained soils indicate that: (1) a soil removed of its colloidal organic content becomes less frost susceptible; (2) the geomorphologic history of a “regional” soil is a critical factor influencing its frost susceptibility; and (3) ξ is dependent on overall clay content and is most sensitive to chlorite content.  相似文献   

4.
Application of a pressure membrane extractor (PME) to establish soil-water characteristic curve (SWCC) of fine-grained soils, in 0–1,500 kPa range, is well established. However, this technique requires testing of several identical specimens, corresponding to same or different pressure(s), and their subsequent removal from the PME chamber for moisture content determination. This turns out to be a cumbersome process and even the results are considered less accurate, by the research fraternity. This is mainly due to the fact that removal of the specimen before equilibration time may not incorporate the influence of the applied pressure, precisely. This calls for the development of an alternate technique that can be employed for measuring the instantaneous moisture content of the specimen when it is pressurized, sequentially, without removing it from the PME chamber. In this context, the utility of electrical measurements (i.e., the voltage) across two points in the specimen for determining moisture content was investigated and its details are presented in this paper. This technique has been found to be quite promising and hence can be employed for acquisition of the data which would yield the moisture content of the specimen, without removing it from the PME chamber, easily and quickly. Validity of the methodology has been demonstrated by comparing the obtained SWCC vis-à-vis those obtained by conducting studies using a dewpoint potentiameter, WP4, and by employing the fitting function and a pedo-transfer function available in the SoilVision database.  相似文献   

5.
Results of laboratory oedometer tests on reconstituted specimens of four clays prepared at different initial water contents, ranging from the liquid limit to 1.75 times the liquid limit, show that the intrinsic compression line may not be “unique” for a given soil. This suggests that the “intrinsic” parameter Iv, which is based on the constants of intrinsic compressibility, e100?, (void ratio corresponding to σv′ = 100?kPa), and Cc?, (e100??e1000?), may in fact not be a truly intrinsic parameter of the soil, but is dependent on sample preparation. The positioning of the normalized compression curve in e–log–σv′ space is significantly influenced by the initial remolding water content, therefore resulting in differing values of e100? for a given soil depending on the initial water content. The influence of initial water content was greater for kaolinitic and illitic clay than for montmorillonitic clay. It is hypothesized that the difference in behavior may be attributed to differences in mineralogy. The results illustrate that caution should be used when comparing tests results from widespread sources and suggest that a standard level of initial water content be used to evaluate the intrinsic compressibility.  相似文献   

6.
A manually operated penetrometer (DMS) fitted with cylindrical (T-bar) and ball penetrometer tips was developed for measuring the profiles of undisturbed and remolded undrained shear strength within box-core samples. This paper summarizes the findings of a series of miniature penetrometer tests and vane shear tests that were carried out on reconstituted clay from a local site in Western Australia. The aim of the tests was to evaluate the potential of the DMS in characterizing the shear strength of seabed surficial sediments. It was found that the DMS gave essentially identical T-bar and ball penetration resistances but these were up to 17% lower than the net cone resistance. From the comparison between the T-bar and ball penetration resistance and the shear strengths measured from vane shear tests, average N factors of 11 and 14 were obtained for intact and fully remolded conditions, respectively. The test results suggest that the DMS is a reliable and efficient means of obtaining intact and remolded shear strength profiles.  相似文献   

7.
Simultaneously assessing liquid limit and plastic limit using a single laboratory test procedure and comparing the results to the standard test methods has not been noted in the published literature. This paper describes an innovative empirical approach that yields Atterberg limit values utilizing a dual-weight fall cone procedure and compares the values with those obtained by traditional Atterberg limits tests.  相似文献   

8.
Mercury is one of the many hazardous substances that has been recognized and banned by many natural codes of practice and governments. Because many laboratory works in research and practice require the use of mercury, safe alternative materials and procedures are being researched. One of the Atterberg limits dealing with volume stability of soils in the field is the shrinkage limit. The conventional method followed by many national codes of practice involves the use of mercury to measure the volume of dry soil pat. This paper proposes sand replacement method to determine the shrinkage limit of soils in the laboratory. This method uses sand of uniform gradation to determine the volume of dry soil pat. The proposed method is simple, safe, free from the limitations of the conventional mercury and wax methods, and eco-friendly. The shrinkage limit values obtained from the proposed sand replacement method compare very well with those from the mercury displacement method.  相似文献   

9.
The paper reports laboratory investigations carried out on a tropical soil profile to study its compressibility, strength, critical state and limit state conditions, and their variation with depth. The soil profile comprises a reddish lateritic layer (horizon B) underlain by a saprolitic soil (horizon C) from which a number of block samples were taken. A series of isotropic and anisotropic compression tests, and drained and undrained triaxial tests, were conducted on specimens sampled at depths between 1.0 and 7.0 m, and also in the exposed saprolitic soil. Special triaxial tests, with the pore pressure increased to induce failure, were performed to investigate the failure at low stress levels. On this basis a tensile cutoff on the failure envelope was defined. In order to assess the influence of the natural soil structure, drained and undrained triaxial tests were carried out on compacted samples obtained from depths of 1.0 and 5.0 m. Higher strength parameters were measured for the horizon C soil, which is consistent with its lower clay content. A nonlinearity in the critical state line in q:p′ stress space was identified, but linear regression was used to obtain critical state parameters. The limit state curves for soils from horizon B are centered on the hydrostatic axis, but limit state curves for horizon C suggested anisotropic behavior.  相似文献   

10.
Assessment of the Liquefaction Susceptibility of Fine-Grained Soils   总被引:6,自引:0,他引:6  
Observations from recent earthquakes and the results of cyclic tests indicate that the Chinese criteria are not reliable for determining the liquefaction susceptibility of fine-grained soils. Fine-grained soils that liquefied during the 1994 Northridge, 1999 Kocaeli, and 1999 Chi-Chi earthquakes often did not meet the clay-size criterion of the Chinese criteria. Cyclic testing of a wide range of soils found to liquefy in Adapazari during the Kocaeli earthquake confirmed that these fine-grained soils were susceptible to liquefaction. It is not the amount of “clay-size” particles in the soil; rather, it is the amount and type of clay minerals in the soil that best indicate liquefaction susceptibility. Thus plasticity index (PI) is a better indicator of liquefaction susceptibility. Loose soils with PI<12 and wc/LL>0.85 were susceptible to liquefaction, and loose soils with 120.8 were systematically more resistant to liquefaction. Soils with PI>18 tested at low effective confining stresses were not susceptible to liquefaction. Additionally, the results of the cyclic testing program provide insights regarding the effects of confining pressure, initial static shear stress, and stress-path on the liquefaction of fine-grained soils.  相似文献   

11.
A series of unsaturated soil triaxial tests were performed on four soils including sand, silt, and a low plasticity clay. Attempts were made to correlate unsaturated soil properties from these tests and data from the literature with soil-water characteristics curve (SWCC), soil gradation, and saturated soil properties. The feasibility of estimating unsaturated soil property functions from saturated soil properties, SWCCs and gradation data, is demonstrated. A hyperbolic model for estimation of the unsaturated soil parameter, ?b, versus matric suction is presented. Shear induced volume change behavior was also studied, and results are included in this paper. Although not correlated with soil index properties, these shear-induced volume change data are important to complete stress-deformation analyses, and represent a significant addition to the existing data base of unsaturated soil properties.  相似文献   

12.
13.
On the basis of critical state soil mechanics, this study derives theoretical formulas for predicting the undrained shear strength of K0 consolidated soft soils in triaxial compression and extension. Although the modified Cam-clay model is often utilized to predict the undrained shear strength of soft clays, it is applicable mainly to isotropically consolidated soils. Because of the anisotropy under K0 consolidation, an inclined elliptical yield surface is chosen, which is different from those methods based on the original Cam-clay model. The inclined elliptical yield surface is testified to be appropriate to the K0 consolidated soft soil and results in a better prediction of undrained strength, especially for the triaxial extension test. It is concluded that the analytical solutions obtained in this paper are in good agreement with the available test results and back-analysis of slope failures. On the basis of the investigation of soil properties, a simple formula is proposed for calculating the mean undrained shear strength along the failure surface.  相似文献   

14.
Results from dynamic penetration tests are traditionally interpreted on the basis of empirical correlations, this being a frequent criticism to these tests. An alternative rational method of interpretation is proposed in this paper from which the energy delivered to the composition of rods is used to calculate a dynamic force that represents the reaction of the soil to the penetration of the sampler (Fd). Interpretation of soil properties both in sand and clay is based on this calculated dynamic force from which the internal friction angle and the undrained shear strength can be estimated. This is achieved from a simple combination of limit equilibrium analysis and cavity expansion theory. Case studies gathered from the Brazilian experience are reported in this paper to illustrate the applicability of the proposed approach.  相似文献   

15.
Strength Properties of Hexametaphosphate Treated Soils   总被引:1,自引:0,他引:1  
The present technical note focuses on the potential application of sodium hexametaphosphate (HMP) in geo-environmental engineering. HMP may have many applications in geotechnical and geo-environmental engineering such as: improvement and stabilization of tailing dams, rehabilitation of old landfills, construction of new clay liners, containment and permeable barriers, etc. In this technical note, it is observed that the strength of silty-clayey sand containing a high concentration of metals (like tailings) is increased by mixing of HMP. On the other hand the strength of the kaolinite clay that may be used during the construction of a liner has been reduced by mixing with HMP. In order to study the influence of HMP, soil mixtures with various amount of HMP are prepared to conduct unconfined compression tests. The strength of the HMP-treated kaolinite specimens is always less than the kaolinite specimens for four weeks. HMP has decreased the strength of silty sand during the first days. However, the cations in the soil (specially Ca and Fe) may lead to precipitation and sorption mechanism to govern and, therefore, the strength increases noticeably up to 740%.  相似文献   

16.
The mechanism controlling the cyclic shear strength of cemented calcareous soils was investigated based on the results obtained from monotonic and cyclic triaxial tests on two different types of calcareous soil. Undrained cyclic triaxial tests performed on artificially cemented calcareous soils with different loading combinations showed that the effective stress path moved towards or away from the origin, due to the generation or dissipation of pore pressure with progressive cycles. Previous investigations have shown that the Peak Strength Envelope or the State Boundary Surface or the Critical State Line forms a boundary beyond which effective stress paths during cyclic loading cannot exist. However, in this study it was observed that the maximum stress ratio (ηmax) obtained from monotonic tests defined the boundary for the cyclic tests. Based on the information obtained from this study, an approach for evaluating the cyclic shear strength is proposed. It was observed that the modified normalized cyclic shear strength had a strong linear relationship with the logarithm of the number of cyclic to failure irrespective of confining pressure, type of consolidation and stress reversal.  相似文献   

17.
Landslides in residual soil slopes are commonly induced by rainfall infiltration. These residual soils are typically in an unsaturated state with negative pore-water pressures or matric suctions since the groundwater tables in steep slopes are often deep. The net normal and shear stresses of the soil remain essentially constant during rainwater infiltration into the slope. Failure of the slope during rainfall can be primarily associated with the decrease in the matric suction of the soil. The objective of the study was to investigate the strength and deformation characteristics of a residual soil of the Bukit Timah Granitic Formation during infiltration that leads to slope failure. There were two modified direct shear apparatuses used. One apparatus was used for the determination of shear strength under controlled suction conditions while the other apparatus was used for shearing-infiltration tests. The shearing-infiltration test results were compared with the shear strength values obtained from the shearing tests under constant suction. The shearing-infiltration test results indicate a close relationship between the decreasing matric suction and the increasing displacement rate of the soil specimen. At the initial part of the infiltration process, there is a rapid reduction in matric suction that is accompanied by little movement in the soil. When failure of the soil is imminent, the soil movement will accelerate.  相似文献   

18.
Effect of Fly Ash on Engineering Properties of Expansive Soils   总被引:8,自引:0,他引:8  
This note presents a study of the efficacy of fly ash as an additive in improving the engineering characteristics of expansive soils. An experimental program has evaluated the effect of the fly ash content on the free swell index, swell potential, swelling pressure, plasticity, compaction, strength, and hydraulic conductivity characteristics of expansive soil. The plasticity, hydraulic conductivity and swelling properties of the blends decreased and the dry unit weight and strength increased with an increase in fly ash content. The resistance to penetration of the blends increased significantly with an increase in fly ash content for a given water content. Excellent correlation was obtained between the measured and predicted undrained shear strengths.  相似文献   

19.
The concept that plasticity index of soils can be defined as a range of water contents producing a 100-fold variation in undrained shear strength has been experimentally verified with the help of a large number of tests on soils of diverse nature. This has led to the redefinition of the plastic limit as the water content at which undrained shear strength is around 170 kN/m2. Undrained shear strength of a soil at the liquid limit can be considered to be around 1.7 kN/m2. Accordingly, both the liquid limit and the plastic limit have been determined in the present work by a single consistent method, i.e., the Swedish fall cone method. The undrained shear strength-water content relationship has been found to be log-linear for a wide range of water contents beginning from lower than the plastic limit to higher than the liquid limit. This resulted in the formulation of an expression for predicting undrained shear strength of a remolded soil at any water content based solely on its liquid limit and plastic limit.  相似文献   

20.
Due to lack of soil sampling during conventional cone penetration testing, it is necessary to characterize and classify soils based on tip and sleeve friction values as well as pore pressure induced during and after penetration. Currently available semiempirical methods exhibit a significant variability in the estimation of soil type. Within the confines of this paper it is attempted to present a new probabilistic cone penetration test (CPT)-based soil characterization and classification methodology, which addresses the uncertainties intrinsic to the problem. For this purpose, a database composed of normalized corrected cone tip resistance (qt,1,net), normalized friction ratio (FR), fines content (FC), liquid limit (LL), plasticity index (PI), and soil type based on the unified soil classification system was complied. Soil classification was performed by laboratory testing of the standard penetration test disturbed samples retrieved from the boreholes within mostly 2?m of each CPT hole. The resulting database was probabilistically assessed through Bayesian updating methodology allowing full and consistent representation of relevant uncertainties, including (1) model imperfection; (2) statistical uncertainty; and (3) inherent variability. As a conclusion, different sets of FC, LL, PI, and A-line boundary curves along with a new CPT-based, simplified soil classification scheme are proposed in the qt,1,net and FR domain. Probabilistic uses of the proposed models are illustrated through a set of illustrative examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号