共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper analyzes the effect of flume test section length on sediment erodibility measurements. A modular flume was constructed and experiments were conducted with two test section lengths: 0.15 and 1.10?m. The internal height and width of the flume were 0.11 and 0.13?m, respectively. A fine (7?μm) commercially available quartz sediment was used for the tests. The expectation was that the shorter flume test section would experience a significantly higher erosion rate (per unit surface area) due to its greater sensitivity to edge effects (i.e., scour) at the entrance and exit of the flume test section. However, the measured erosion rates at comparable bottom stresses were only 35% greater in the short test-section tests. These results were consistent with the lack of significant scour development at the entrance or exits of the test sections. Hence, flume test section length alone does not appear to significantly affect erodibility measurements provided edge effects (i.e., scour) are minor. 相似文献
2.
3.
J. Aberle V. Nikora S. McLean C. Doscher I. McEwan M. Green D. Goring J. Walsh 《Canadian Metallurgical Quarterly》2003,129(1):63-67
The design of a straight benthic flow-through flume for in situ studies of cohesive sediment dynamics is described including the flume structure and probes installed for routine measurements of suspended sediments and flow velocity. The flume was calibrated for two roughness types covering the range of possible cohesive bed roughnesses. The calibration included a set of three-dimensional velocity measurements using acoustic Doppler velocimeter. These measurements were used to develop calibration relationships between the bed shear stress (which is difficult to measure directly in routine deployments) and the flume centerline flow velocity, which is routinely measured. An example of a successful deployment of the flume is presented. The limitations and potential for further improvements are also briefly discussed. 相似文献
4.
Jesse D. Roberts Richard A. Jepsen Scott C. James 《Canadian Metallurgical Quarterly》2003,129(11):862-871
Soil and sediments play an important role in water management and water quality. Issues such as water turbidity, associated contaminants, reservoir sedimentation, undesirable erosion and scour, and aquatic habitat are all linked to sediment properties and behaviors. In situ analysis is necessary to develop an understanding of the erosion and transport of sediments. Sandia National Laboratories has recently patented the Adjustable Shear Stress Erosion and Transport (ASSET) Flume that quantifies in situ erosion of a sediment core with depth while affording simultaneous examination of transport modes (bedload versus suspended load) of the eroded material. Core erosion rates and ratios of bedload to suspended load transport of quartz sediments were studied with the ASSET Flume. The erosion and transport of a fine-grained natural cohesive sediment were also observed. Experiments using quartz sands revealed that the ratio of suspended load to bedload sediment transport is a function of grain diameter and shear stress at the sediment surface. Data collected from the ASSET Flume were used to formulate a novel empirical relation for predicting the ratio of bedload to suspended load as a function of shear stress and grain diameter for noncohesive sediments. 相似文献
5.
Methods for interpreting data from in situ flume measurements of cohesive sediment dynamics are evaluated and a technique for estimating various erosion parameters using in situ measurements is proposed. There is currently a lack of uniformity in analysis techniques for cohesive erosion data collected in flumes and with in situ instruments and the proposed technique resolves some of these inconsistencies. The data set used in this study was derived from field experiments conducted with a straight benthic in situ flume in different aquatic environments in New Zealand. The experiments with stepwise increases in flow velocity revealed that peaks in the erosion rate at the beginning of each velocity step are most likely associated with heterogeneous bed structure, as transient hydrodynamic effects due to the experimental procedure were found to be insignificant. The field data showed an exponential decay of the erosion rate with time that is indicative of depth-limited erosion. These data are used to illustrate methods for the parameterization of the proposed semiempirical erosion equation, taking into account the time dependency of the erosion process. 相似文献
6.
K. Debnath V. Nikora J. Aberle B. Westrich M. Muste 《Canadian Metallurgical Quarterly》2007,133(5):508-520
New field data on cohesive sediment erosion is presented and discussed, with particular focus on partitioning the total erosion into resuspension and bed load. The data were obtained using a recently developed in situ flume of the National Institute of Water and Atmospheric Research, New Zealand. The erosion rate is estimated from direct measurements of bed surface elevations by acoustic sensors, whereas resuspension rate is obtained using data on sediment concentrations measured by optical backscatter sensors. The bed- load contribution to the total erosion rate is evaluated from the conservation equation for sediments. To test repeatability, the data from the in situ flume are compared with those from a previous version of the flume. The results show that comparative studies of in situ flumes and standardized deployment procedures enable direct comparison of experimental data on cohesive sediment erosion. Overall, the data show that a commonly used assumption that the erosion rate is equal to the resuspension rate is not always valid as bed load plays a significant role in cohesive sediment erosion. The data also highlight the importance of clay content and other sediment physical characteristics in the sediment mixture. 相似文献
7.
This technical note presents a new facility which was constructed in order to study sediment and bedrock abrasion processes during fluvial transport. These processes exert an important control on long-term landscape evolution but they are still poorly understood and inadequately quantified. The proposed experimental device is an annular flume with four fluid injections coupled to a close water circuit and a powerful pump, in order to reach hydrodynamic conditions up to whose prevailing in mountain streams. Fluid surface geometry and visualization experiments with a high speed camera allow us to monitor hydrodynamic variables and sediment motion during the experiments. Despite the circular geometry of the flume, pebble trajectories are found to closely mimic the bedload behavior in straight flume. Based also on a direct comparison with pebble abrasion rates along a large Himalayan River, we hypothesize that our device simulates in a realistic way transport processes and consequently abrasion processes in mountain rivers. 相似文献
8.
It is a challenge to apply coupled hydrodynamic, sediment process, and contaminant fate and transport models to the studies of surface water systems. So far, there are few published modeling studies on sediment and metal transport in rivers that simulate storm events on an hourly basis and use comprehensive data sets for model input and model calibration. The United States Environmental Protection Agency (USEPA) in 1997 emphasized the need for credible modeling tools that can be used to quantitatively evaluate the impacts of point sources, nonpoint sources, and internal transport processes in 1D/2D/3D environments. A 1D and time-dependent hydrodynamic, sediment, and toxic model, within the framework of the 3D Environmental Fluid Dynamics Code (EFDC), has been developed and applied to Blackstone River, Mass. The Blackstone River Initiative (USEPA) in 1996, a multiyear and multimillion-dollar project, provided the most comprehensive surveys on water quality, sediment, and heavy metals in the river, and served as the primary data set for this study. The model simulates three storm events successfully. The river flow rates are well calculated both in amplitude and in phase. The sediment transport and resuspension processes are depicted satisfactorily. The concentrations of sediment and five metals (cadmium, chromium, copper, nickel, and lead) during the three storm events are also simulated very well. Numerical analyses are conducted to clarify the impacts of contaminant sources and sediment resuspension processes on the river. While point sources are important to sediment contamination in the river, other sources, including nonpoint sources from watershed and bed resuspension, were found to contribute significantly to the sediment and metals in the river. Point sources alone cannot account for the total metals in the river. The model presented in this paper can be a useful tool for studying sediment and metals transport in shallow rivers and for water resource management. 相似文献
9.
Flume experiments investigated the effect of mobile sand on the erosion of cohesive beds. The fluid-induced stress alone was not enough to cause erosion, and sand motion as bed load was needed. Erosion rates and suspended sediment concentration were found to increase with increasing sand transport and to decrease with increasing median grain size. The erosion rate was found to be at a maximum during saltation, intermediate during creep, and lowest during suspension. 相似文献
10.
The results of an experimental investigation of the time variation of scour hole and the flow characteristics of the quasi-equilibrium state of scour of a cohesive bed downstream of an apron due to a submerged horizontal jet issuing from a sluice opening are presented. Experiments were carried out with natural cohesive sediment for various sluice openings, jet velocities, and lengths of apron. Attempts are made to explain the similarity existing either in the process of scour or in the scour profiles that the scour holes follow downstream of an apron. The scour profiles at different times follow a particular geometrical similarity and can be expressed by a polynomial using relevant parameters. The characteristic parameters affecting the time variation of scour depth are identified based on the physical reasoning and dimensional analysis. An equation for time variation of maximum scour depth is obtained empirically. The diffusion characteristics of the submerged jet, growth of boundary layer thickness, velocity distribution within the boundary layer, and shear stress at the quasi-equilibrium state of scour are also investigated. The expression of shear stress is obtained from the solution of the von Kármán momentum integral equation. 相似文献
11.
Experiments have been carried out in a mobile-bed laboratory flume in order to study the sediment exchange process between the main channel and the groyne fields. The flume represented half the width of a schematized river reach with a series of groynes. The experiment was designed to represent typical dimensions of the Dutch River Waal at a geometrical scale of 1:100. The conditions were set to guarantee bed load as well as suspended load sediment transport. Conditions with submerged and emerged groynes were investigated. In addition to traditional measurements, viz., bed-level changes, suspended sediment concentrations, and flow velocities, bed-form propagation was measured in two dimensions using a the particle image velocimetry technique. The results were analyzed with focus on sediment exchange mechanisms and sediment transport patterns. The results demonstrate that under all flow conditions there is a net import of sediment into the groyne fields. The prevailing transport mechanisms vary with the flow stage: if the groynes are emerged it is mainly advection by the primary circulation cell, whereas if the groynes are submerged it is rather residual advection by large-scale coherent flow structures (in a straight reach). Additional entrainment of sediment by enhanced turbulence complicates the erosion/deposition patterns. 相似文献
12.
Jerome P.-Y. Maa 《Canadian Metallurgical Quarterly》2008,134(8):1102-1109
Four in situ experiments on sediment erosion characteristics were conducted at the Anacostia River that runs through Washington, D.C. Supplemental erosion rate data were also obtained by carrying out five laboratory experiments using sediment samples collected at the field. In laboratory experiments, the sediment samples were mixed with tap water and placed in the flume to form beds for finding the difference in terms of erosion characteristics caused by different sediment composition among the five samples. This approach enables the finding of erosion characteristics for the entire tidal Anacostia River with limited resources. The in situ measured critical bed-shear stresses τcr for erosion at the water-sediment interface z = 0 varies from 0.03 to 0.08?Pa. Field results indicated that τcr(z) increases with the depth z and becomes more than 0.6 to 0.7?Pa with an erosion thickness of less than 1?cm. Sediment beds prepared at a laboratory appear having an upper limit on how much τcr(z) can be developed. 相似文献
13.
A sediment plug is defined as aggradation in a river that completely blocks the main channel. Information from documented cases of sediment plug development in alluvial rivers was used to develop criteria for plug formation and to identify the setup conditions for sites that are prone to plug formation. Site characteristics, processes, and associated parameters were evaluated based on a comprehensive literature review and evaluation of data. A plug formation theory was developed and tested using a unique sediment transport/movable bed numerical model that simulates the key processes considered to affect plug formation. The theory and model were calibrated and validated against field data, and then used to develop simplified criteria that can be used to predict plug formation. Findings from this study can be used to identify sites that may be prone to plug formation, and the criteria can be used to evaluate the potential for plug formation based upon field site conditions when data are not available to complete a more detailed study. 相似文献
14.
Machine Learning Approach to Modeling Sediment Transport 总被引:7,自引:0,他引:7
Inaccuracies of sediment transport models largely originate from our limitation to describe the process in precise mathematical terms. Machine learning (ML) is an alternative approach to reduce the inaccuracies of sedimentation models. It utilizes available domain knowledge for selecting the input and output variables for the ML models and uses modern regression techniques to fit the measured data. Two ML methods, artificial neural networks and model trees, are adopted to model bed-load and total-load transport using the measured data. The bed-load transport models are compared with the models due to Bagnold, Einstein, Parker et al., and van Rijn. The total-load transport models are compared with the models due to Ackers and White, Bagnold, Engelund and Hansen, and van Rijn. With the chosen data sets on bed-load and total-load transport the ML models provided better accuracy than the existing ones. 相似文献
15.
The role of sediment pore-water chemistry and the resulting particle structure in determining the erosional stability of settled cohesive sediment beds in rivers, lakes, and estuaries is examined. Kaolinite sediment is used as the surrogate sediment in this experimental investigation with the beds settled from concentrated suspensions. The bed stability with respect to erosion or resuspension is measured in a laboratory flume as a function of sediment pore-water chemistry. The chemical properties varied are sediment pH, ionic strength, and natural organic matter. The remolded bed sample is prepared from a sediment suspension having controlled chemical properties that is allowed to settle into the flume bed where its erosional strength and density are determined with depth in the sample. Different structures of settled beds are observed with changes in chemical parameters. Under low pH and low organic content conditions, the initial suspension before settling is flocculated. The resulting settled beds show strong stratification with respect to erosional strength but weak stratification of bulk density with depth. On the other hand, under high pH or high organic content conditions at low ionic strength, the initial suspension is dispersed. The resulting settled beds have lower erosional strength and weak stratification of erosional strength with depth but strong stratification of bulk density with depth. This research shows that the relationship between erosional strength and bulk density of a settled bed depends strongly on the structure of the sediment particle associations as determined by pore-water chemistry. 相似文献
16.
Erosion of the Upper Layer of Cohesive Sediments: Characterization of Some Properties 总被引:1,自引:0,他引:1
Ouafae El Ganaoui Estelle Schaaff Patrick Boyer Muriel Amielh Fabien Anselmet Christian Grenz 《Canadian Metallurgical Quarterly》2007,133(9):1087-1091
A recent companion paper reported an experimental protocol used to analyze sediment properties. This protocol identified for both freshwater and marine sediments a surface layer with specific dynamic properties (critical erosion shear stresses in the range 0.025–0.05?N?m?2) and a second layer with critical erosion shear stresses about ten times larger. The present study compares these former results with recent work which extended the applicability domain of the Shields diagram to very fine particles. The surface layer is shown to consist in fine and unconsolidated sediments that behave like noncohesive material whereas the second layer is characterized as being cohesive. The surface layer is mainly representative of recent deposits of suspended particles. This points out the existence of a fluffy layer of fine sized particles resting near the bed, with specific erosion characteristics, which has to be considered separately when studying sediment properties. 相似文献
17.
Nian-Sheng Cheng 《Canadian Metallurgical Quarterly》2008,134(8):1136-1141
The critical condition for incipient sediment motion is formulated in this note based on the settling velocity. The formula obtained is simple, relating the ratio of critical shear velocity to settling velocity to the dimensionless sediment diameter. Comparisons are then made with other settling-velocity based formulas available in the literature. To facilitate the computation of the effective near-bed velocity at the threshold condition, a generalized law-of-the-wall function is proposed for predicting the velocity distribution under various boundary conditions. This study demonstrates that the settling velocity is equivalent to the critical near-bed velocity, which is experienced by a typical bed sediment particle under the threshold condition, but only for large sediment sizes such as sand and gravel. Comparison results show that Yang’s formula is suitable for flows with small flow depth relative to sediment size while Le Roux’s formula may overestimate the threshold condition for fine particles by up to 30%. 相似文献
18.
Problems and difficulties in modeling sediment transport in alluvial rivers arise when one uses the theory of equilibrium transport of uniform sediment to simulate riverbed variation. A two-dimensional mathematical model for nonuniform suspended sediment transport is presented to simulate riverbed deformation. Through dividing sediment mixture into several size groups in which the sediment particles are thought to be uniform, the nonuniformity and the exchange between suspended sediment and bed material are considered. The change of concentration along the flow direction, size redistribution, and cross-sectional bed variation can then be described reasonably well by the model. In simulating the flow field with big dry-wet flats, moving boundary problems are solved very well by introducing a so-called finite-slot technique. Verification with laboratory data shows that the model has a good ability to simulate channel bed variations. Last, the model was applied to a real alluvial river system. Variables such as water level, sediment concentration, suspended sediment size distribution, and riverbed variation were obtained with encouraging results. 相似文献
19.
Some laboratory sediment-transport experiments are described in which a compound channel with a mobile-bed composed of uniform sand with a d50 of 0.88?mm was subjected to overbank flows. The main river channel was monitored to determine the effect of floodplain roughness on conveyance capacity, bed-form geometry, resistance, bed-load transport, and dune migration rate. The floodplain roughness was varied to simulate a wide range of conditions, commensurate with conditions that can occur in a natural river. For a given discharge, the main river channel bed was found to adjust itself to a quasi-equilibrium condition governed by the lateral momentum transfer between the floodplain and main channel flows and the local alluvial resistance relationship appropriate for the proportion of total flow in the main river channel. The sediment transport rate was found to reflect all these influences. The data are summarized in equation form for comparison with other experimental studies and for checking numerical river simulation models. 相似文献
20.
The continuity equation, Manning’s equation, Einstein’s wall correction procedure and sediment transport equations are combined to indicate channel aspect ratios which maximize sediment transport for a given water discharge in rigid-bank trapezoidal and rectangular channels with fixed slope. Higher aspect ratios are required to maximize sediment transport for channels conveying bed load than for those with a dominant suspended load. A total load equation predicts optimum aspect ratios lying in between those for bed load and suspended load channels. The equations imply that the optimum aspect ratio increases markedly as the channel bank to channel bed roughness ratio increases. The resulting optimum ratios are smaller than the aspect ratios of many natural rivers. 相似文献