首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
气体软氮化是以渗氮为主的低温氮碳共渗,钢表面渗入氮原子的同时,还有少量的碳原子渗入而形成极其细小的碳化物,碳化物作为媒介可促进渗氮。由于该工艺处理温度低,时间短,所以工件变形小,脆性低。综述了以提高表面硬度、抑制表层脆性、高温短时等为主的气体软氮化工艺的发展状况,分别从稀土催渗、多元共渗、周期循环渗氮、可控气氛渗氮和奥氏体软氮化等5个方面阐述了气体软氮化渗层性能的影响机理和研究现状,并介绍了35钢增压喷丸表面纳米化对气体软氮化过程的影响,展望了表面纳米化用于气体软氮化的发展前景。  相似文献   

2.
采用超声喷丸+循环氮化时效+二次氧化复合处理工艺对M2钢进行处理,研究了表面的性能。结果表明,在相同渗氮时间下,复合处理工艺的渗氮层比单一循环氮化时效工艺的深30μm,比传统QPQ渗氮层深约100μm,表明其有更快的渗氮速度;复合处理后,M2钢的耐腐蚀性能好,其表面的腐蚀速度约为单一循环氮化时效处理试样的2/3左右,约为未处理试样的2/5。  相似文献   

3.
臧悦  赵艳君  任学平  李殊霞 《热加工工艺》2014,(10):166-169,172
采用多元合金化思路设计了一种新型低碳无铝渗氮钢。研究了该钢的淬透性曲线、基体显微组织、渗氮层组织与硬度,以及热处理工艺对钢力学性能的影响。结果表明,该钢具有很高的淬透性;经920~930℃保温30 min后油冷,600℃保温120 min空冷回火获得回火索氏体组织,可获得强韧性较好的心部组织及韧性较好的渗氮层。新型渗氮钢经过渗氮处理后形成稳定而高度弥散的氮化物,氮化钢表面硬度大于860 HV5,是一种新的氮化用钢。  相似文献   

4.
葛志宏  邓静 《铸造技术》2014,(11):2600-2602
采用QPQ技术对M2钢进行氮化处理,研究QPQ工艺对M2钢组织结构的影响。结果表明,QPQ氮化的最佳温度为580℃,可在3 h形成约0.3 mm的渗氮深度,大大节约了渗氮时间。  相似文献   

5.
王怡萱 《表面技术》2024,53(7):200-207
目的 选择M50NiL钢(高合金钢)和AISI 4140钢(低合金钢)2种合金钢,研究渗氮气压对合金钢等离子体渗氮层组织结构、渗层厚度、硬度、韧性和摩擦磨损性能的影响规律。方法 根据离子渗氮GB/T30883—2017,在0~500 Pa渗氮气压范围内选择170、250、350 Pa 3个渗氮气压进行等离子体渗氮,研究渗层微观结构和性能。结果 对于M50NiL和AISI 4140两种合金钢,350 Pa时渗层厚度均最大,170 Pa次之,250 Pa厚度最小。M50NiL钢在350 Pa渗氮和AISI 4140钢在170 Pa渗氮时,表面层具有最优的强韧性。摩擦磨损性能显示,170 Pa和350 Pa气压渗氮的摩擦磨损性能明显优于250 Pa气压渗氮,其中磨损率规律与渗氮层的韧性值测试结果吻合。结论 气压影响了氮离子的能量和分布,从而影响了渗层厚度,钢中的合金元素含量和气压共同影响表面强韧化效果,并且表面强韧化效果直接影响渗氮层的摩擦磨损性能。  相似文献   

6.
一、前言为了提高钢表面的使用性能,通常把钢材进行表面氮化处理,使其形成表面渗氮层从而提高钢表面的耐磨性和抗腐蚀性能。众所周知,渗氮层中γ'-Fe_4N和各种含氮量的ε相都能强化钢的表面。但ξ-Fe_2N却为脆性相对钢表面性能起着有害作用。因此定性定量测定渗氮层中的各相及其含量对改进渗氮工艺使其提高各种强化相的含量,抑制ξ-Fe_2N相的产生都是很有意义的。渗氮层的X射线相分析,一向为人们所关注。但由于人们所使用的1-1236(ε-Fe_3N)和3-0925(ε-Fe_(2-3)N)JCPDS卡片存在着错  相似文献   

7.
对PH13-8Mo钢离子渗氮工艺参数进行了研究,其中包括渗氮温度、渗氮时间及渗氮件表面粗糙度。结果表明:随渗氮温度的升高、渗氮时间的延长、零件表面粗糙度的降低,PH13-8Mo钢渗氮层厚度增加;渗氮零件表面粗糙度对渗氮层脆性等级影响较大,渗氮零件表面粗糙度为6.3 μm时,其脆性等级达到III级;渗氮时间、渗氮温度及零件表面粗糙度对渗氮层硬度影响甚微。渗氮温度540 ℃,渗氮时间22 h,零件表面粗糙度0.8 μm时,PH13-8Mo钢可获得良好的渗氮层,渗氮层厚度可达197.5 μm,渗氮层硬度可达1083 HV0.2,脆性等级为II级。  相似文献   

8.
采用正交试验法对M2钢模具表面QPQ盐浴复合处理工艺进行研究。结果表明,渗氮温度对渗氮层质量影响最大,其次为渗氮时间和氰酸根浓度。M2钢模具表面复合强化的最优工艺参数为:渗氮温度610℃,渗氮时间5 h,渗氮氰酸根浓度32%。该工艺下渗氮层深度为406μm,渗氮层显微硬度最高值为824 HV0.1。  相似文献   

9.
利用脉冲电沉积(PED)预处理,在纯铁和45钢表面形成由厚度50 nm左右的片状结构组成的含Cr、Ni预处理层,然后再在480℃进行9 h气体渗氮。采用扫描电镜(SEM)和电子探针(EPMA)对预处理层和氮化层的表面形貌和成分进行表征,采用X射线衍射(XRD)对氮化层进行物相分析,结果表明:通过脉冲电沉积预处理,纯铁和45钢都实现了低温、快速气体渗氮。通过硬度测量及电化学方法测试表明,脉冲电沉积预处理不仅提高了气体渗氮后纯铁及45钢表面硬度,改善了脆性,引入的Cr、Ni元素及Ni-Cr-Fe合金层还提高了氮化层的耐蚀性能。  相似文献   

10.
32Cr2Mo2NiVNb 钢盐浴氮化工艺   总被引:3,自引:3,他引:0  
高志恒  付扬帆 《表面技术》2015,44(10):68-73
目的将盐浴氮化工艺用于32Cr2Mo2NiVNb钢的表面处理。方法采用盐浴氮化工艺处理32Cr2Mo2NiVNb钢,通过对金相组织、力学性能、断口形貌、耐蚀性能、高温耐磨性能等的测试分析,研究该工艺对32Cr2Mo2NiVNb钢组织和性能的影响,验证该工艺对32Cr2Mo2NiVNb钢的适用性。结果32Cr2Mo2NiVNb钢盐浴氮化后,基体组织为均匀的细针状索氏体+少量游离铁素体,渗氮层深度约为0.23 mm,化合物层深度均匀,约为17μm,渗氮层疏松度、氮化物、脆性评级均达到1级;表面硬度为1011HV0.3,较氮化前提高153.4%;抗拉强度、拉伸断口形貌均无明显变化,断后伸长率、断面收缩率、冲击吸收能量仅小幅降低;耐中性盐雾时间为镀硬铬试样的6.3倍;经190 s高温磨损的表面磨痕细小均匀,磨损失重较镀硬铬试样降低62.8%。结论盐浴氮化工艺不损害32Cr2Mo2NiVNb钢组织、强度等,仅使塑性、韧性指标小幅降低,相较于镀硬铬工艺,可显著提高32Cr2Mo2NiVNb钢的耐蚀性、高温耐磨性,对32Cr2Mo2NiVNb钢的工艺适用性良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号