共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
3.
容积卡尔曼滤波(CKF)是一种新型的非线性滤波方法,可获得优于扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)的滤波精度和滤波效率.但是,传统的CKF基于三阶容积准则而提出,因此滤波精度受到限制,为进一步提高CKF滤波性能,文中将容积准则由三阶扩展到五阶,采用两种不同容积点集选择方案,提出一种新型的五阶CKF算法.该算法可有效改善传统CKF在精度方面的理论局限,并有效改善一般五阶CKF计算量大的问题.机动目标跟踪仿真结果表明了新方法的有效性和可行性. 相似文献
4.
基于IMMCKF的机动目标跟踪算法 总被引:1,自引:0,他引:1
针对非线性机动目标跟踪中滤波器易发散、跟踪精度低等问题,将容积卡尔曼滤波器(CKF)引入到交互式多模型算法(IMM)中,设计了交互式多模型容积卡尔曼滤波算法(IMMCKF)。该算法采用Markov过程描述多个目标模型间的切换,利用CKF滤波器对每个模型进行滤波,将各滤波器状态输出的概率加权融合作为IMMCKF的输出。仿真结果表明,与IMMUKF算法相比,IMMCKF算法跟踪精度更高,模型切换速度更快,计算量更小,该算法具有重要的工程应用价值。 相似文献
5.
基于简化平方根容积卡尔曼滤波的跟踪算法 总被引:2,自引:0,他引:2
目标跟踪的模型通常可表示为一个线性的状态方程与一个非线性的观测方程,为提高平方根容积卡尔曼滤波(SCKF)算法的跟踪精度和实时性,提出了一种简化的平方根容积卡尔曼滤波(RSCKF)算法。简化算法在时间更新环节,直接利用状态转移矩阵计算状态变量以及协方差矩阵的一步预测值,避免了原算法中采用一组容积点近似计算的复杂过程,推导证明,简化后的算法其时间更新环节与卡尔曼滤波的一步预测结果一致。最后对两种算法进行了计算复杂度比较以及角跟踪仿真实验。实验结果表明,简化的算法能够降低运算时间并提高跟踪精度。 相似文献
6.
7.
张彪薛俊杰杨自豪王涛徐光辉 《现代雷达》2022,(2):9-15
由于雷达探测目标是在极坐标系下进行的,因此在直角坐标系下建立雷达跟踪系统的状态方程和观测方程时,观测方程是非线性的,基于当前统计模型的机动目标跟踪不能直接通过标准卡尔曼滤波实现。文中在当前统计模型基础上,提出用容积卡尔曼滤波来实现非线性滤波,并将其与扩展卡尔曼滤波进行比较。通过对一个三维空间中机动目标跟踪的仿真,表明该算法能稳定跟踪目标,且跟踪精度高。 相似文献
8.
传统单一线性或非线性滤波方法往往难以获得最优线性/非线性混合动态系统状态估计,针对这一问题,结合卡尔曼滤波(KF)方法可获得线性状态估计最优解、计算量小等优势,提出了一种基于KF和扩展容积卡尔曼滤波(A-CKF)的组合滤波方法。该方法将系统状态分解为线性状态与非线性状态两部分,分别采用KF和简化两次扩展容积卡尔曼滤波(STA-CKF)方法进行系统状态估计。机动目标跟踪和捷联惯性导航系统非线性对准仿真结果表明,相比于Rao-Blackwellized粒子滤波方法,新方法在保证滤波精度的前提下,使得计算成本有效降低;相比于STA-CKF方法,新方法在滤波精度和滤波实时性方面均得到明显提高。 相似文献
9.
针对机动目标跟踪系统建模中的非线性问题,提出一种基于容积卡尔曼滤波(CKF)的雷达与红外传感器融合算法。考虑到被估计系统对目标跟踪算法实时性与精度的要求,在容积滤波框架下构建了集中式量测融合(CMF)和分布式状态融合(DSF)两种结构形式。CMF结构采用最优加权方法,首先对雷达和红外两种异类传感器的方位角度量测信息进行融合,并将其与融合后的雷达径向距量测构建新的量测数据,进而通过CKF算法对机动目标进行跟踪。DSF结构则首先对雷达量测中径向距信息进行加权融合,并将融合结果作为红外传感器的虚拟径向距量测,以实现红外量测的扩维处理,进而对每组量测数据应用CKF进行分布式并行加权融合,获得目标运动状态的最终估计。仿真场景中,对两种融合方法的性能进行比较,理论分析与仿真实验验证了算法的可行性与有效性。 相似文献
10.
11.
12.
航向航速是海面目标的重要特征,能准确估计出目标的航向航速对于海面目标的跟踪、识别和打击具有非常重要的意义。由于海面目标跟踪中易出现量测高精度、系统复杂强非线性等情况,导致传统非线性滤波器对海面目标航向航速的估计精度不高。此外,海面运动目标自身速度较慢,滤波器的稳态波动对海面目标的航速估计影响较大。针对上述问题,提出了一种基于截断的自适应容积卡尔曼滤波器(TACKF)的海面目标航向航速估计算法。仿真结果表明,所提出的TACKF算法较传统的非线性滤波算法有显著的性能提升,可以有效提高复杂环境下海面目标航向航速的估计精度。 相似文献
13.
基于高斯和均方根容积卡尔曼滤波的姿态角辅助目标跟踪算法 总被引:1,自引:0,他引:1
根据目标2维运动速度与姿态角的关系,该文提出一种姿态角辅助目标跟踪算法。在目标运动学基础上建立状态向量中包含姿态角的跟踪模型,实现姿态角对目标跟踪的辅助;针对基于模板匹配姿态角量测的噪声为非高斯情况,将均方根容积卡尔曼滤波引入到高斯和滤波框架下,提出新的高斯和均方根容积卡尔曼滤波算法,提高非线性非高斯处理能力,同时结合目标运动中姿态角的变化规律,建立姿态角分量不同的跟踪模型,通过模型切换实现机动姿态角的滤波。算法对姿态角量测进行滤波,同时实现了姿态角信息与位置信息的有效融合。仿真结果验证了该算法的有效性和正确性。 相似文献
14.
针对机动目标跟踪问题,提出了一种IMM-RDCKF算法。首先充分利用量测方程中只有部分状态变量是非线性的特点,对于非线性的量测方程采用降维滤波方法,可以在保障跟踪精度条件下减小计算量。其次,对IMM算法中的转移概率矩阵进行实时估计,提高了模型匹配概率。再次,滤波过程中由于误差累积可能导致协方差矩阵失去正定性,对算法进行了优化,确保了滤波过程中协方差矩阵的正定性,提高了算法稳定性。Monte-Carlo仿真结果表明,与CKF算法相比,该算法的跟踪精度有明显的提高,计算效率提高了一倍。 相似文献
15.
针对传统的交互式多模型(IMM)算法通常采用相同维数的模型进行滤波,存在较大的模型误差以及当前统计模型(CS)中的参数需要合理设定的问题,提出一种变维自适应交互式多模型(AIMM)跟踪算法。该算法首先利用维数变换,将不同维数的模型转换为统一的维数进行交互滤波,使之适用于一般的机动目标,减少模型跟踪误差;然后通过引入由残差信息定义的调整因子对CS模型中的参数自适应调整,提高模型与实际运动模式的匹配程度;最后将参数调整后的CS模型反馈到变维IMM算法中,来改善跟踪性能。仿真实验表明,与传统变维IMM算法相比,文中所提算法在有效跟踪机动目标的同时,提高了目标的跟踪精度。 相似文献
16.
基于卡尔曼粒子滤波的目标跟踪算法 总被引:1,自引:0,他引:1
目标跟踪在计算机视觉领域有着重要的应用。文中在对运动目标跟踪算法进行研究之后,应用卡尔曼粒子滤波算法进行运动目标的跟踪,同时利用Matlab 对卡尔曼滤波算法、粒子滤波算法及卡尔曼粒子滤波算法进行了实验仿真。实验结果表明,运用卡尔曼粒子滤波算法能够更快、更准确地对运动目标进行跟踪,可将其广泛应用于目标跟踪中。 相似文献
17.
针对移动短波通信场景下短波信道出现的时变性使得正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统不能精确估计信道状态信息导致通信质量下降的问题,提出了一种基于容积卡尔曼滤波(Cubature Kalman Filter,CKF)的信道估计方法。该方法基于球面径向积分准则,可更好地追踪信道的变化,提升信道估计的精度。建立了基于信道频域响应的非线性状态空间方程,并用容积卡尔曼滤波对每帧符号的信道频域响应进行估计。系统仿真结果表明,在静态短波通信场景到720 km/h的移动短波通信场景中,所提算法对信道有着更精确的估计精度,也可以有效抵抗多径时延所带来的影响。因此,所提算法更适用于移动短波通信场景。 相似文献