首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As is well known, the heat transfer coefficient of a solar air heater duct can be increased by providing artificial roughness on the heated wall (i.e. the absorber plate). Experiments were performed to collect heat transfer and friction data for forced convection flow of air in solar air heater rectangular duct with one broad wall roughened by wedge shaped transverse integral ribs. The experiment encompassed the Reynolds number range from 3000 to 18000; relative roughness height 0.015 to 0.033; the relative roughness pitch 60.17φ−1.0264<p/e<12.12; and rib wedge angle (φ) of 8, 10, 12 and 15°. The effect of parameters on the heat transfer coefficient and friction factor are compared with the result of smooth duct under similar flow conditions. Statistical correlations for the Nusselt number and friction factor have been developed in terms of geometrical parameters of the roughness elements and the flow Reynolds number.  相似文献   

2.
Artificial roughness in form of ribs is convenient method for enhancement of heat transfer coefficient in solar air heater. This paper presents experimental investigation of heat transfer and friction factor characteristics of rectangular duct roughened with W-shaped ribs on its underside on one broad wall arranged at an inclination with respect to flow direction. Range of parameters for this study has been decided on basis of practical considerations of system and operating conditions. Duct has width to height ratio (W/H) of 8.0, relative roughness pitch (p/e) of 10, relative roughness height (e/Dh) 0.018-0.03375 and angle of attack of flow (α) 30-75°. Air flow rate corresponds to Reynolds number between 2300-14,000. Heat transfer and friction factor results have been compared with those for smooth duct under similar flow and thermal boundary condition to determine thermo-hydraulic performance. Correlations have been developed for heat transfer coefficient and friction factor for roughened duct.  相似文献   

3.
This paper presents the study of fluid flow and heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. Lower side of collector plate is made rough with metal ribs of circular, square and triangular cross-section, having 60° inclinations to the air flow. The grit rib elements are fixed on the surface in staggered manner to form defined grid. The system and operating parameters studied are: e/Dh = 0.044, p/e = 17.5 and l/s = 1.72, for the Reynolds number range 3600-17,000. To validate CFD results, experimental investigations were carried out in the laboratory. It is found that experimental and CFD analysis results give the good agreement. The optimization of rib geometry and its angle of attack is also done. The square cross-section ribs with 58° angle of attack give maximum heat transfer. The percentage enhancement in the heat transfer for square plate over smooth surface is 30%.  相似文献   

4.
Experimental investigation on the heat transfer and friction characteristics of rib-grooved artificial roughness on one broad heated wall of a large aspect ratio duct shows that Nusselt number can be further enhanced beyond that of ribbed duct while keeping the friction factor enhancement low. The experimental investigation encompassed the Reynolds number range from 3000 to 21,000; relative roughness height 0.0181–0.0363; relative roughness pitch 4.5–10.0, and groove position to pitch ratio 0.3–0.7. The effect of important parameters on the heat transfer coefficient and friction factor has been discussed and the results are compared with the results of ribbed and smooth duct under similar flow conditions. The present investigation clearly demonstrates that the heat transfer coefficient for rib-grooved arrangement is higher than that for the transverse ribs, whereas the friction factor is slightly higher for rib-grooved arrangement as compared to that of rectangular transverse ribs of similar rib height and rib spacing. The conditions for best performance have been determined. Correlations for Nusselt number and friction factor have been developed that predict the values within reasonable limits.  相似文献   

5.
The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. This paper presents a comparison of effective efficiency of solar air heaters having different types of geometry of roughness elements on the absorber plate. The effective efficiency has been computed by using the correlations for heat transfer and friction factor developed by various investigators within the investigated range of operating and system parameters.  相似文献   

6.
V.S. Hans  R.P. Saini 《Solar Energy》2010,84(6):898-911
The use of artificial roughness on the underside of the absorber plate is an effective and economic way to improve the thermal performance of a solar air heater. Several experimental investigations, involving different types of roughness elements, have been carried out to improve the heat transfer from the absorber plate to air flowing in solar air heaters. This paper presents an experimental investigation carried out to study the effect of multiple v-rib roughness on heat transfer coefficient and friction factor in an artificially roughened solar air heater duct. The experiment encompassed Reynolds number (Re) from 2000 to 20000, relative roughness height (e/D) values of 0.019-0.043, relative roughness pitch (P/e) range of 6-12, angle of attack (α) range of 30-75° and relative roughness width (W/w) range of 1-10. Extensive experimentation has been conducted to collect data on heat transfer and fluid flow characteristics of a rectangular duct roughened with multiple v-ribs. Using these experimental data, correlations for Nusselt number and friction factor in terms of roughness geometry and flow parameters have been developed.  相似文献   

7.
An experimental investigation has been carried out to study the heat transfer coefficient by using 90° broken transverse ribs on absorber plate of a solar air heater; the roughened wall being heated while the remaining three walls are insulated. The roughened wall has roughness with pitch (P), ranging from 10–30 mm, height of the rib of 1.5 mm and duct aspect ratio of 8. The air flow rate corresponds to Reynolds number between 3000–12,000. The heat transfer results have been compared with those for smooth ducts under similar flow and thermal boundary condition to determine the thermal efficiency of solar air heater.  相似文献   

8.
An experimental investigation has been carried out for a range of system and operating parameters in order to analyse effect of artificial roughness on heat transfer and friction in solar air heater duct having protrusions as roughness geometry. An increase in heat transfer and friction loss has been observed for duct having roughened absorber plate. Experimental data have been used to develop Nusselt number and friction factor correlations as function of system and operating parameters for predicting performance of the system having investigated type of roughness geometry.  相似文献   

9.
An experimental investigation has been carried out on a packed bed solar air heater using wire mesh as packing material. Data pertaining to heat transfer and friction characteristics were collected for air flow rates ranging from 0.0159 to 0.0347 kg/s-m2 for eight sets of matrices with varying geometrical parameters. The thermal efficiency of a packed bed solar air heater was compared with that of a conventional solar air heater to determine the enhancement which was found to be strong function of system and operating parameters of the bed. It was found that an enhancement of the order of 76.9-89.5% can be obtained. Experimental data were utilised to develop correlations for Colburn Jh factor and friction factor as function of geometrical parameters of the bed and the flow Reynolds number. These correlations were found to predict the experimental results with reasonable accuracy. It has also been found that the present correlations show much better agreement as compared to the values predicted by earlier correlations for such systems.  相似文献   

10.
In the present scenario, numerous applications perform on solar energy for cooking, heating and cooling, and power generation, globally. Solar air heaters are one of these applications purposely used for, drying, timber seasoning and space heating. In the present work, a solar air heater (SAH) has been designed to produce a good exhaust temperature for long hours especially in the case of poor ambient conditions or during off sunshine hours. A mixture of desert and granular carbon in the ratio of 4:6 has been used as thermal heat storage inside the SAH. Two halogen lights of 300 W are used to increase the exhaust temperature of the SAH by placing them in the inlet and outlet ducts. All the experiments have conducted on natural and forced convection for performance evaluation on two similar design solar air heaters (with and without heat storage). The comparisons are made with two similar design solar air heaters carrying desert and granular carbon, as an individual heat storing media, to find out an optimum design of a SAH with long term heating. The thermal efficiencies of the novel SAH range from 18.04% to 20.78% of natural convection and 52.21%–80.05% with forced convection.  相似文献   

11.
This paper presents results of a study of the performance of solar air heaters with 60 ° v-down discrete rectangular cross-section repeated rib roughness on the air flow side of the absorber plate. A detailed investigation has been carried out using a mathematical model to study the effects of various ambient, operating and design parameters on the thermal efficiency and effective efficiency (based on the net gain after taking account of the pumping power) of such air heaters. The study shows that, at air mass flow rates less than about 0.04 kg s−1 per m2 of the absorber plate, roughened duct solar air heaters provide significant performance advantage over the smooth duct air heater. The thermal and effective efficiencies differ only marginally at low flow rates. With the increase in the flow rate, the difference between the thermal and effective efficiencies increases because of the increase in the pumping power. At the mass flow rate of about 0.045 kg s−1 m−2, the effective efficiencies of the roughened and smooth duct solar air heaters are practically the same. The results of the study are presented in the form of design plots.  相似文献   

12.
S. Jaisankar  K.N. Sheeba 《Solar Energy》2009,83(11):1943-1952
Experimental investigation of heat transfer, friction factor and thermal performance of twisted tape solar water heater with various twist ratios has been conducted and the results are compared with plain tube collector for the same operating conditions with Reynolds number varied from 3000 to 23,000. Experimental data from plain tube collector is validated with the fundamental equations and found that the discrepancy is less than ±5.35% and ±8.80% for Nusselt number and friction factor, respectively. Correlations have been developed for Nusselt number and friction factor with various twist ratios (Y = 3, 4, 5, 6) and are compared with the experimental values. Results conclude that, heat transfer and pressure drop are higher in twisted tape collector compared to the plain one. Among the various twist ratios, the minimum twist ratio 3 is found to enhance the heat transfer and pressure drop due to swirl generation. As the twist ratio increases, the swirl generation decreases and minimizes the heat transfer and friction factor.  相似文献   

13.
A review on roughness geometry used in solar air heaters   总被引:2,自引:0,他引:2  
Varun  R.P. Saini  S.K. Singal   《Solar Energy》2007,81(11):1340-1350
The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. Number of geometries of roughness elements has been investigated on the heat transfer and friction characteristics of solar air heater ducts. In this paper an attempt has been made to review on element geometries used as artificial roughness in solar air heaters in order to improve the heat transfer capability of solar air heater ducts. The correlations developed for heat transfer and friction factor in roughened ducts of solar air heaters by various investigators have been reviewed and presented.  相似文献   

14.
A matrix solar collector fabricated from broken glass pieces is being supposed to be a thermally efficient and economically cheap system for heating air. In this communication, we develop an analysis to study the performance of such a system. Typical cases considered are (i) top surface blackened, (ii) all glass pieces blackened and (iii) bottom surface blackened. Numerical calculations have been performed to study the effect of single and double glazing and insulation at the bottom, besides the effect of other physical parameters.  相似文献   

15.
Effects of combined ribs and delta-winglet type vortex generators (DWs) on forced convection heat transfer and friction loss behaviors for turbulent airflow through a solar air heater channel are experimentally investigated in the present work. Measurements are carried out in the rectangular channel of aspect ratio, AR = 10 and height, H = 30 mm. The flow rate is presented in the form of Reynolds numbers based on the inlet hydraulic diameter of the channel ranging from 5000 to 22,000. The cross-section shape of the rib placed on the absorber plate to create a reverse-flow is an isosceles triangle with a single rib height, e/H = 0.2 and rib pitch, Pl/H = 1.33. Ten pairs of the DW with its height, b/H = 0.4; transverse pitch, Pt/H = 1 and three attack angles (α) of 60°, 45° and 30° are introduced and mounted on the lower plate entrance of the tested channel to generate longitudinal vortex flows. The experimental results show that the Nusselt number and friction factor values for combined rib and DW are found to be much higher than those for the rib/DW alone. The larger attack angle of the DW leads to higher heat transfer and friction loss than the lower one. In common with the rib, the DW pointing upstream (PU-DW) is found to give higher heat transfer rate and friction loss than the DW pointing downstream (PD-DW) at a similar operating condition. In comparison, the largest attack angle (α = 60°) of the PU-DW yields the highest increase in both the Nusselt number and friction factor while the lowest attack angle of the PD-DW provides the best thermal performance.  相似文献   

16.
Artificial roughness has been found to enhance the heat transfer from the collector plate to the air in a solar air heater. However, it would result in increase in frictional losses and hence, power required by fan or blower. This paper presents the results of an experimental investigation of thermohydraulic performance of roughened solar air heaters with metal rib grits. The range of variation of system and operating parameters is investigated within the limits of, e/Dh: 0.035-0.044, p/e: 15-17.5 and l/s as 1.72, against variation of Reynolds number, Re: 3600-17000. The study shows substantial enhancement in thermal efficiency (10-35%), over solar air heater with smooth collector plate. The thermal efficiency enhancement is also accompanied by a considerable increase in the pumping power requirement due to the increase in the friction factor (80-250%). The optimum design and operating conditions have been determined on the basis of thermohydraulic considerations. It has been found that, the systems operating in a specified range of Reynolds number show better thermohydraulic performance depending upon the insolation. A relationship between the system and operating parameters that combine to yield optimum performance has been developed.  相似文献   

17.
An experimental study has been carried out to determine the effect on the heat transfer and friction characteristics of an equilateral triangular solar air heater duct using inclined continuous ribs as roughness element on the absorber plate. The experimental study encompasses the range of Reynolds numbers from 5600 to 28,000, relative roughness height (e/Dh) 0.021–0.043, relative roughness pitch (p/e) 8–16 and angle of attack (α ) 30–60°. The duct has an aspect ratio (W/H) of 1.15. The effect of flow parameters and roughness parameters on heat transfer and friction factor is discussed. The thermohydraulic performance parameter has been determined for the given range of flow parameters and roughness parameters.  相似文献   

18.
Giovanni Tanda 《Energy》2011,36(11):6651-6660
Repeated ribs are considered an effective technique to enhance forced convection heat transfer in channels. In order to establish the performance of rib-roughened channels, both heat transfer and friction characteristics have to be accounted for. In the present paper, heat transfer coefficients and friction factors have been experimentally investigated for a rectangular channel having one wall roughened by repeated ribs and heated at uniform flux, while the remaining three walls were smooth and insulated. Angled continuous ribs, transverse continuous and broken ribs, and discrete V-shaped ribs were considered as rib configurations. Different performance evaluation criteria, based on energy balance or entropy generation analysis, were proposed to assess the relative merit of each rib configuration. All the rib-roughened channels performed better than the reference smooth channel in the medium-low range of the investigated Reynolds number values, which is that typically encountered in solar air heater applications.  相似文献   

19.
This paper presents the results of an experimental investigation of heat transfer and friction in the flow of air in rectangular ducts having multi v-shaped rib with gap roughness on one broad wall. The investigation encompassed Reynolds number (Re) from 2000 to 20,000, relative gap distance (Gd/Lv) values of 0.24–0.80, relative gap width (g/e) values of 0.5–1.5, relative roughness height (e/D) values of 0.022–0.043, relative roughness pitch (P/e) values of 6–12, relative roughness width ratio (W/w) values of 1–10, angle of attack (α) range of 30°–75°. The optimum values of geometrical parameters of roughness have been obtained and discussed. For Nusselt number (Nu), the maximum enhancement of the order of 6.74 times of the corresponding value of the smooth duct has been obtained, however the friction factor (f) has also been seen to increase by 6.37 times of that of the smooth duct. The rib parameters corresponding to maximum increase in Nu and f were Gd/Lv = 0.69, g/e = 1.0, e/D = 0.043, P/e = 8, W/w = 6 and α = 60°. Based on the experimental data, correlations for Nu and f have been developed as function of roughness parameters of multi v-shaped with gap rib and flow Reynolds number.  相似文献   

20.
The numerical study of laminar forced convection inside double-flow solar air heater with electrohydrodynamic technique is investigated by finite difference method. The electric field is generated by the wire electrodes charged with DC high voltage. The mathematical modeling of computational fluid dynamics includes the interactions among electric field, flow field, and temperature field. It can be perceived that augmented heat transfer with presence of an electric field increases with the supplied voltage but decreases with the total mass flux. The optimized mass flux ratio is expressed incorporating with concerning parameter comprising of the electrode arrangement, the number of electrodes, the total heat flux at an absorbing plate, and the channel geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号