首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a compact remote-sensing instrument that permits spatially resolved mapping of atmospheric trace gases by passive differential optical absorption spectroscopy (DOAS) and present our first applications of imaging of the nitrogen dioxide contents of the exhaust plumes of two industrial emitters. DOAS permits the identification and quantification of various gases, e.g., NO2, SO2, and CH2O, from their specific narrowband (differential) absorption structures with high selectivity and sensitivity. With scattered sunlight as the light source, DOAS is used with an imaging spectrometer that is simultaneously acquiring spectral information on the incident light in one spatial dimension (column). The second spatial dimension is scanned by a moving mirror.  相似文献   

2.
3.
A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.  相似文献   

4.
We present initial results obtained from an optical absorption sensor for the monitoring of ambient atmospheric nitrogen dioxide concentrations (0-200 ppb). This sensor utilizes cavity attenuated phase shift spectroscopy, a technology related to cavity ringdown spectroscopy. A modulated broadband incoherent light source (a 430-nm LED) is coupled to an optically resonant cavity formed by two high-reflectivity mirrors. The presence of NO(2) in the cell causes a phase shift in the signal received by a photodetector that is proportional to the NO(2) concentration. The sensor, which employed a 0.5-m cell, was shown to have a sensitivity of 0.3 ppb in the photon (shot) noise limit. Improvements in the optical coupling of the LED to the resonant cavity would allow the sensor to reach this limit with integration times of 10 s or less (corresponding to a noise equivalent absorption coefficient of <1 x 10(-8) cm(-1) Hz(-1/2)). Over a 2-day-long period of ambient atmospheric monitoring, a comparison of the sensor with an extremely accurate and precise tunable diode laser-based absorption spectrometer showed that the CAPS-based instrument was able to reliably and quantitatively measure both large and small fluctuations in the ambient nitrogen dioxide concentration.  相似文献   

5.
Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO(2), NO(2), O(3), and HNO(2) averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.  相似文献   

6.
A small palm-sized, reference spectrometer, mounted on a remote-controlled model helicopter is being developed and tested by the National Physical Laboratory (NPL) in conjunction with City University, London. The developed system will be used as a key element for field vicarious calibration of optical earth observation systems in the visible-near infrared (VNIR) region. The spectrometer is hand held, low weight, and uses a photodiode array. It has good stray light rejection and wide spectral coverage, allowing simultaneous measurements from 400 to 900 nm. The spectrometer is traceable to NPL’s primary standard cryogenic radiometer via a high-temperature metal-carbon eutectic fixed-point blackbody. Once the fixed-point temperature has been determined (using filter radiometry), the eutectic provides a high emissivity and high stability source of known spectral radiance over the emitted spectral range. All wavelength channels of the spectrometer can be calibrated simultaneously using the eutectic transition without the need for additional instrumentation. The spectrometer itself has been characterized for stray light performance and wavelength accuracy. Its long-term and transportation stability has been proven in an experiment that determined the “World’s Bluest Sky”—a process that involved 56 flights, covering 100,000 km in 72 days. This vicarious calibration methodology using a eutectic standard is presented alongside the preliminary results of an evaluation study of the spectrometer characteristics.  相似文献   

7.
The optical design of an absorption spectrometer for in situ measurements of atmospheric trace gases is reported. The light source is a rapidly tuned and power-stabilized dye-ring laser, which is frequency doubled by an intracavity BBO crystal. The second harmonic and the fundamental are used simultaneously for measurement of OH, SO(2), CH(2)O, and naphthalene in the UV and of NO(2) in the visible. The 1.2-km absorption path is folded within a 6-m White-cell-type multiple-reflection system with an open-path setup. The absorption sensitivity of the spectrometer is better than 1 part in 10(-5) under tropospheric conditions (integration time 1 min., signal-to-noise ratio 1).  相似文献   

8.
We describe the four-laser airborne infrared (FLAIR) instrument, a tunable diode laser absorption spectrometer designed for simultaneous high-sensitivity in situ measurements of four atmospheric trace gases in the troposphere. The FLAIR spectrometer was employed during the large-scale airborne research campaign on tropospheric ozone (TROPOZ II) in 1991 and was used to measure CO, H(2) O(2), HCHO, and NO(2) in the free troposphere where detection limits below 100 parts in 10(12) by volume were achieved.  相似文献   

9.
Simple spectral stray light correction method for array spectroradiometers   总被引:1,自引:0,他引:1  
Zong Y  Brown SW  Johnson BC  Lykke KR  Ohno Y 《Applied optics》2006,45(6):1111-1119
A simple, practical method has been developed to correct a spectroradiometer's response for measurement errors arising from the instrument's spectral stray light. By characterizing the instrument's response to a set of monochromatic laser sources that cover the instrument's spectral range, one obtains a spectral stray light signal distribution matrix that quantifies the magnitude of the spectral stray light signal within the instrument. By use of these data, a spectral stray light correction matrix is derived and the instrument's response can be corrected with a simple matrix multiplication. The method has been implemented and validated with a commercial CCD-array spectrograph. Spectral stray light errors after the correction was applied were reduced by 1-2 orders of magnitude to a level of approximately 10(-5) for a broadband source measurement, equivalent to less than one count of the 15-bit-resolution instrument. This method is fast enough to be integrated into an instrument's software to perform real-time corrections with minimal effect on acquisition speed. Using instruments that have been corrected for spectral stray light, we expect significant reductions in overall measurement uncertainties in many applications in which spectrometers are commonly used, including radiometry, colorimetry, photometry, and biotechnology.  相似文献   

10.
Durry G  Megie G 《Applied optics》1999,38(36):7342-7354
The Spectromètre à Diodes Laser Accordables (SDLA), a balloonborne spectrometer devoted to the in situ measurement of CH(4) and H(2)O in the atmosphere that uses commercial distributed-feedback InGaAs laser diodes in combination with differential absorption spectroscopy, is described. Absorption spectra of CH(4) (in the 1.653-mum region) and H(2)O (in the 1.393-mum region) are simultaneously sampled at 1-s intervals by coupling with optical fibers of two near-infrared laser diodes to a Herriott multipass cell open to the atmosphere. Spectra of methane and water vapor in an altitude range of ~1 to ~31 km recorded during the recent balloon flights of the SDLA are presented. Mixing ratios with a precision error ranging from 5% to 10% are retrieved from the atmospheric spectra by a nonlinear least-squares fit to the spectral line shape in conjunction with in situ simultaneous pressure and temperature measurements.  相似文献   

11.
KC U  Silver JA  Hovde DC  Varghese PL 《Applied optics》2011,50(24):4805-4816
An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N(2), CO(2), O(2), and CO in a methane-air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.  相似文献   

12.
Photochemical removal of NO(2) in N(2) or air (5-20% O(2)) mixtures was studied by using 172-nm Xe(2) excimer lamps to develop a new simple photochemical aftertreatment technique of NO(2) in air at atmospheric pressure without using any catalysts. When a high power lamp (300 mW/cm(2)) was used, the conversion of NO(2) (200-1000 ppm) to N(2) and O(2) in N(2) was >93% after 1 min irradiation, whereas that to N(2)O(5), HNO(3), N(2), and O(2) in air (10% O(2)) was 100% after 5s irradiation in a batch system. In a flow system, about 92% of NO(2) (200 ppm) in N(2) was converted to N(2) and O(2), whereas NO(2) (200-400 ppm) in air (20% O(2)) could be completely converted to N(2)O(5), HNO(3), N(2), and O(2) at a flow rate of 1l/min. It was found that NO could also be decomposed to N(2) and O(2) under 172-nm irradiation, though the removal rate is slower than that of NO(2) by a factor of 3.8. A simple model analysis assuming a consecutive reaction NO(2)-->NO-->N+O indicated that 86% of NO(2) is decomposed directly into N+O(2) and the rest is dissociated into NO+O under 172-nm irradiation. These results led us to conclude that the present technique is a new promising catalyst-free photochemical aftertreatment method of NO(2) in N(2) and air in a flow system.  相似文献   

13.
A compact rack-mounted cavity ring-down spectrometer (CRDS) for simultaneous measurements of the nocturnal nitrogen oxides NO(3) and N(2)O(5) in ambient air is described. The instrument uses a red diode laser to quantify mixing ratios of NO(3) (at its absorption maximum at 662 nm) and of N(2)O(5) following its thermal dissociation to NO(3) in a second detection channel. The spectrometer is equipped with an automated zeroing and calibration setup to determine effective NO(3) absorption cross-sections and NO(3) and N(2)O(5) inlet transmission efficiencies. The instrument response was calibrated using simultaneous measurements of NO(2), generated by thermal dissociation of N(2)O(5) and/or by titration of NO(3) with excess NO, using blue diode laser CRDS at 405 nm. When measuring ambient air, the (2σ, 10 s) precision of the red diode CRDS varied between 5 and 8 parts-per-trillion by volume (pptv), which sufficed to quantify N(2)O(5) concentrations under moderately polluted conditions. Sample N(2)O(5) measurements made on a rooftop on the University of Calgary campus in August 2010 are presented. A maximum N(2)O(5) mixing ratio of 130 pptv was observed, corresponding to a steady-state lifetime of less than 50 min. The NO(3) mixing ratios were below the detection limit, consistent with their predicted values based on equilibrium calculations. During the measurement period, the instrument response for N(2)O(5) was 70% of the theoretical maximum, rationalized by a slight mismatch of the laser diode output with the NO(3) absorption line and a N(2)O(5) inlet transmission efficiency less than unity. Advantages and limitations of the instrument's compact design are discussed.  相似文献   

14.
A Michelson interferometer spectrometer cooled to 10 degrees by liquid helium was flown into an IBC class III aurora on 1 April 1976 from Poker Flat, Alas. The sensor, HIRIS, covered the spectral range 455-2500 wave numbers (4-22 microm) with a spectral resolution of 1.8 cm(-1) and an NESR of 5 x 10-12 W/cm2 scrm(-1) at 1000 cm(-1). An atmospheric emission spectrum was obtained every 0.7 sec over an altitude range of 70-125 km. Atmospheric spectra were obtained of CO2 (nu3), NO (Deltanu = 1), O3 (nu3) and CO2 (nu2). Auroral produced excitations were observed for each band, this being the first known measurement of auroral enhancements of O3 (nu3), 9.6 microm, and CO2 (nu2), 15 microm, emissions.  相似文献   

15.
《Journal of Modern Optics》2013,60(12):1167-1174
In spectrophotometers the term ‘stray light’ is used to refer to the minute amount of unwanted light having wavelengths outside the narrow band isolated by the optical system. The effect of stray light is to reduce the accuracy of the instrument and in some cases to restrict the wavelength range over which the instrument may be used. The paper describes an optical method by which the stray light transmission of a monochromator may be determined for various wavelengths. If the particular instrument studied is found to show stray light behaviour of a type which varies continuously with wavelength, a simple technique can be applied for assessing the errors that will occur with any given sample. The relative importance of near-stray and far-stray light is discussed.  相似文献   

16.
Frins E  Bobrowski N  Platt U  Wagner T 《Applied optics》2006,45(24):6227-6240
A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO(2), HCHO, SO(2), H(2)O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg.  相似文献   

17.
The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003-cm(-1)), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources. It is designed to make in situ measurements in the lower and middle stratosphere on either a balloon platform or high-altitude remotely piloted aircraft. Chemical species that can be measured precisely include long-lived tracers N(2)O and CH(4), the shorter-lived tracer CO, and chemically active species HCl and NO(2). Advances in electronic instrumentation developed for ALIAS-I, with the experience of more than 250 flights on board NASA's ER-2 aircraft, have been implemented in ALIAS-II. The two-channel spectrometer features an open cradle, multipass absorption cell to ensure minimal contamination from inlet and surfaces. Time resolution of the instrument is 相似文献   

18.
Accurate spectral calibration of airborne and spaceborne imaging spectrometers is essential for proper preprocessing and scientific exploitation of high spectral resolution measurements of the land and atmosphere. A systematic performance assessment of onboard and scene-based methods for in-flight monitoring of instrument spectral calibration is presented for the first time in this paper. Onboard and ground imaging data were collected at several flight altitudes using the Airborne Prism Experiment (APEX) imaging spectrometer. APEX is equipped with an in-flight characterization (IFC) facility allowing the evaluation of radiometric, spectral, and geometric system properties, both in-flight and on-ground for the full field of view. Atmospheric and onboard filter spectral features present in at-sensor radiances are compared with the same features in reference transmittances convolved to varying instrument spectral configurations. A spectrum-matching algorithm, taking advantage of the high sensitivity of measurements around sharp spectral features toward spectrometer spectral performance, is used to retrieve channel center wavelength and bandwidth parameters. Results showed good agreement between spectral parameters estimated using onboard IFC and ground imaging data. The average difference between estimates obtained using the O(2) and H(2)O features and those obtained using the corresponding filter features amounted to about 0.3 nm (0.05 of a spectral pixel). A deviation from the nominal laboratory instrument spectral calibration and an altitude-dependent performance was additionally identified. The relatively good agreement between estimates obtained by the two approaches in similar spectral windows suggests they can be used in a complementary fashion: while the method relying on atmospheric features can be applied without the need for dedicated calibration acquisitions, the IFC allows assessment at user-selectable wavelength positions by custom filters as well as for the system on-ground.  相似文献   

19.
Hawat T  Stephen T  Murcray F 《Applied optics》2002,41(18):3582-3589
The absolute solar transmittance interferometer measures absolute solar radiance at the Earth's surface. The instrument is based on a Fourier-transform spectrometer that utilizes a liquid-nitrogen-cooled InSb detector and appropriate optical bandpass filters. The recorded solar spectra are calibrated against National Institute of Standards and Technology traceable lamps and a blackbody source. The spectral range addressed by this instrument is from 1950 to 10100 cm(-1) at a resolution of 2 cm(-1). The optical design of the instrument and the experimental methods are discussed. A discussion of the uncertainties involving the instrument and the calibration sources is presented. Initial measurements from several sites are compared with atmospheric model calculations.  相似文献   

20.
In preparation for a possible space mission, a breadboard version named REFIR-BB of the Radiation Explorer in the Far Infrared (REFIR) instrument has been built. The REFIR is a Fourier-transform spectrometer with a new optical layout operating in the spectral range 100-1100 cm(-1) with a resolution of 0.5 cm(-1), a 7-s acquisition time, and a signal-to-noise ratio of better than 100. Its mission is the spectral measurement in the far infrared of the Earth's outgoing emission, with particular attention to the long-wavelength spectral region, which is not covered by either current or planned space missions. This measurement is of great importance for deriving an accurate estimate of the radiation budget in both clear and cloudy conditions. The REFIR-BB permits the trade-off among all instrument parameters to be studied, the optical layout to be tested, and the data-acquisition strategy to be optimized. The breadboard could be used for high-altitude ground-based campaigns or could be flown for test flights on aircraft or balloon stratospheric platforms. The breadboard's design and the experimental results are described, with particular attention to the acquisition strategy and characterization of the interferometer. Tests were performed both in laboratory conditions and in vacuum. Notwithstanding a loss of efficiency above 700 cm(-1) caused by the poor performance of the photolithographic polarizers used as beam splitters, the results demonstrate the feasibility of using the spectrometer for space applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号