首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The aim of this study was to develop novel biomedical electrospun nanofiber mats for controlled drug release, in particular to release a drug directly to an injury site to accelerate wound healing. Here, nanofibers of chitosan (CS), poly(ethylene oxide) (PEO), and a 90 : 10 composite blend, loaded with a fluoroquinolone antibiotic, such as ciprofloxacin hydrochloride (CipHCl) or moxifloxacin hydrochloride (Moxi), were successfully prepared by an electrospinning technique. The morphology of the electrospun nanofibers was investigated by scanning electron microscopy. The functional groups of the electrospun nanofibers before and after crosslinking were characterized by Fourier transform infrared spectroscopy. X‐ray diffraction results indicated an amorphous distribution of the drug inside the nanofiber blend. In vitro drug‐release evaluations showed that the crosslinking could control the rate and period of drug release in wound‐healing applications. The inhibition of bacterial growth for both Escherichia coli and Staphylococcus aureus were achieved on the CipHCl‐ and Moxi‐loaded nanofibers. In addition, both types of CS/PEO and drug‐containing CS/PEO nanofibers showed excellent cytocompatibility in the cytotoxicity assays. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42060.  相似文献   

2.
With the herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D) as a model drug, a series of poly(vinyl alcohol)–starch (PVA–ST) composite films for controlled drug release were prepared by a casting method. The morphology, structure, and release properties were systematically investigated. The results show that when the PVA–ST composite film containing 2,4‐D (PSD) was immersed in water, the drug‐release rate was high, whereas the introduction of sodium montmorillonite (Na‐MMT) and an alginate ion‐crosslinking structure to PSD significantly reduced the release rate and maintained the sustained release of the model drug for a longer period. A leaching experiment through the soil layer showed that the PSD drug‐loaded film with Na‐MMT and the alginate ion‐crosslinking structure (PSDMA) possessed good release properties. The cumulative leached amount of the herbicide 2,4‐D after eight irrigations was reduced to 57.6% from 100%. In addition, the PSDMA film showed favorable mechanical and thermal properties. This composite film is expected to have potential applications in the fields of agriculture, drug delivery, and more. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45051.  相似文献   

3.
With bovine serum albumin (BSA) as a model drug, drug‐loaded films of chitosan (CS) and poly(vinyl alcohol) (PVA) were obtained by a casting/solvent evaporation method and crosslinked by tripolyphosphate (TPP). The films were characterized by FTIR, XRD, and SEM. The influential factors of drug‐loaded films on drug‐controlled release were studied. These factors included, primarily, the component ratio of CS and PVA, the loaded amount of BSA, the pH and ionic strength of the release solution, and the crosslinking time with TPP. The results showed that within 25 h, when the weight ratios of CS to PVA in the drug‐loaded films were 90 : 10, 70 : 30, 50 : 50, and 30 : 50, the cumulative release rates of BSA were 63.3, 72.9, 81.8, and 91.8%, respectively; when the amounts of model drug were 0.1, 0.2, and 0.3 g, the release rates were 100, 81.8, and 59.6%, respectively; when the pH values of the drug release medium were 1.0, 3.8, 5.4, and 7.4, the release rates reached 100, 100, 37.9, and 7.8%, respectively; the cumulative release rates of BSA were 78.4, 82.3, 84.3, and 91.7% when the ionic strengths of the release solution were, respectively, 0.1, 0.2, 0.3, and 0.4M; when the crosslinking times of these drug films in the TPP solution were 0, 5, 15, 30, and 60 min, the release rates attained 100, 100, 81.8, 65, and 43.3%, respectively. All the results indicated that the CS/PVA film was useful in drug delivery systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 808–813, 2005  相似文献   

4.
In this study, polybutyrolactam (PBA) was synthesized, and the PBA/chitosan (CS) blended films were fabricated for wound dressings. The results showed that the surface roughness of the blended films decreased with the increasing ratios of CS. In addition, the tensile strength of the film with 50 wt % CS (NC50) was about 33.6 MPa and the highest compared with other films. The hydrophilicity of the blended films gradually decreased while the water vapor transmission rates (WVTRs) increased with the increase of CS content. Moreover, the blended films could be biodegradable in phosphate buffer saline. Both PBA and blended films were non‐toxic and good for L929 cells growth, showing good cytocompatibility. Furthermore, the NC50 was found to promote the cell proliferation better than other groups. It can be suggested that the NC50 combined the advantages of both PBA and CS well. Therefore, the NC50 with good cytocompatibility, mechanical properties, and WVTRs might be suitable for wound dressing applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46511.  相似文献   

5.
The present investigation describes the synthesis and the characterization of a novel highly stable polysaccharidic hydrogel system, designed for modified drug delivery. Gels and films based on the biodegradable and biocompatible chitosan (CS) were prepared by a crosslinking reaction between the polysaccharide amino groups with tartaric acid, using the short‐range crosslinkers 1‐ethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide (EDC) and N‐hydroxysuccinimide (NHS) as coupling agents. The aim of the study is to characterize the novel CS hydrogel by means of rheological and mechanical measurements; in vitro swelling, release, and degradation studies were also carried out. Obtained results show how the structure of the obtained networks can deeply affect dynamomechanical properties of the hydrogel as well as the delivery rate of loaded model drugs. The mechanical characterization of the hydrogel, in the form of films, indicates that the film elasticity increases as the water content in the hydrogel increases. Rheological studies evidenced that the different network structures can affect the elastic modulus of the system. Release studies of two model molecules, i.e., vitamin B12 and blue dextran, of different steric hindrance were carried out using both the bulk gel and the film. In vitro release of both drugs was evaluated in water and in Hepes to assess the suitability of this novel drug delivery system for pharmaceutical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Flurbiprofen axetil (FA)‐loaded coaxial electrospun poly(vinyl pyrrolidone) (PVP)–nanopoly(lactic‐co‐glycolic acid) core–shell composite nanofibers were successfully fabricated by a facile coaxial electrospinning, and an electrospun drug‐loaded system was formed for anti‐adhesion applications. The FA, which is a kind of lipid microsphere nonsteroidal anti‐inflammatory drug, was shown to be successfully adsorbed in the PVP, and the formed poly(lactic‐co‐glycolic acid) (PLGA)/PVP/FA composite nanofibers exhibited a uniform and smooth morphology. The cell viability assay and cell morphology observation revealed that the formed PLGA/PVP/FA composite nanofibers were cytocompatible. Importantly, the loaded FA within the PLGA/PVP coaxial nanofibers showed a sustained‐release profile and anti‐adhesion activity to inhibit the growth of the IEC‐6 and NIH3T3 model cells. With the significantly reduced burst‐release profile, good cytocompatibility, and anti‐adhesion activity, the developed PLGA/PVP/FA composite nanofibers were proposed to be a promising material in the fields of tissue engineering and pharmaceutical science. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41982.  相似文献   

7.
Reduced graphene oxide (rGO) sheets were first modified with 2‐hydroxypropyltrimethyl ammonium chloride chitosan (HACC), and these modified rGO sheets (named HACC–rGO) were used as reinforcement materials and introduced to the walls of chitosan (CS) microcapsules. All of the monodisperse microcapsules were conveniently generated by a gas–liquid microfluidic technique. The results of scanning electron microscopy, X‐ray diffraction, and thermogravimetric analysis all demonstrate that the HACC–rGO sheets existed and were dispersed in the capsular shell. The HACC–rGO‐reinforced CS microcapsules showed better mechanical strength and better chemical stability with an α‐cyclodextrin solution than the CS microcapsules without HACC–rGO. Importantly, the HACC–rGO‐reinforced CS microcapsules exhibited a slower drug‐release behavior and provide a method for the control of the release rate of drug‐loaded microcapsules. In an in vitro cytotoxicity evaluation by a 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide assay, the Schwann cells still showed good cell viability after they were treated by extracts of the CS/HACC–rGO microcapsules with concentrations ranging from 0.02 to 2000 μg/mL. Therefore, the HACC–rGO‐reinforced CS microcapsules are promising for applications in the fields of drug delivery and controlled release. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44549.  相似文献   

8.
Biopolymer-based antibacterial films are attractive materials for wound dressing application because they possess chemical, mechanical, exudate absorption, drug delivery, antibacterial, and biocompatible properties required to support wound healing. Herein, we fabricated and characterized films composed of arabinoxylan (AX) and sodium alginate (SA) loaded with gentamicin sulfate (GS) for application as a wound dressing. The FTIR, XRD, and thermal analyses show that AX, SA, and GS interacted through hydrogen bonding and were thermally stable. The AXSA film displays desirable wound dressing characteristics: transparency, uniform thickness, smooth surface morphology, tensile strength similar to human skin, mild water/exudate uptake capacity, water transmission rate suitable for wound dressing, and excellent cytocompatibility. In Franz diffusion release studies, >80% GS was released from AXSA films in two phases in 24 h following the Fickian diffusion mechanism. In disk diffusion assay, the AXSA films demonstrated excellent antibacterial effect against E.coli, S. aureus, and P. aeruginosa. Overall, the findings suggest that GS-loaded AXSA films hold potential for further development as antibacterial wound dressing material.  相似文献   

9.
This study investigated the effect of ionic crosslinking on the mechanical, barrier, and optical properties of chitosan (CS) and CS/graphene oxide (CSGO) composite films using trisodium citrate (CIT) and sodium tripolyphosphate (TPP) solutions of different concentrations (0.5, 1.0. 2.0, and 3.0% w/v). Successful crosslinking was confirmed by Fourier-transform infrared spectroscopy. The hydrophilicity and light transmittance decreased significantly (p < 0.05) with the increase in concentration of both crosslinking agents. The CS films crosslinked with 3.0% w/v TPP exhibited significant (p < 0.05) improvements in barrier properties, achieving a 51% decrease of water vapor permeability and 59% decrease in oxygen permeability, in comparison to neat CS film. In addition, TPP-crosslinked CSGO films experienced an 82% and 42% improvement in tensile strength and elongation at break, respectively. Overall, crosslinked CS and CSGO films possess significantly improved properties and have great potential to be further studied as food packaging materials.  相似文献   

10.
Ternary composite films of poly(vinyl alcohol) (PVA), boric acid (BA), and detonation nanodiamond (DND) were prepared by aqueous solution method. Because of its excellent mechanical/thermal properties and low friction coefficient, DND is expected to offer PVA film superior performance if the puzzles of particle agglomeration in polymer matrix and fragile interface reaction between DND and PVA can be settled. BA was used as a crosslinking agent to form a strong network structure between DND and PVA. Investigation on microstructure of PVA/BA/DND films and bonding mechanisms therein shows that BA, DND, and PVA may crosslink by oxo‐bridges owing to the interaction of hydroxyl groups. The Young's modulus (E) of composite films was enhanced by nearly 3.3 times with only 0.8 wt % DND loading, and the antiwear, thermal stability, and waterproof properties can be significantly improved after the crosslinking. Meanwhile, the transparency of composite films can be well preserved even with large DND content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45449.  相似文献   

11.
For the healing process, in this study, an innovative polymeric hydrogel network including polyvinyl alcohol (PVA)/chitosan (CS)/gum tragacanth (GT) loaded with vitamin E (VE) was produced by the freeze–thaw approach. In order to investigate the characteristics of the prepared samples, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) analyzes were performed. Also, water vapor transmission rate (WVTR), swelling ratio, gel fraction and mechanical properties were measured. Then, to observe their cytocompatibility, MTT assay and cell adhesion studies were assessed. The results of FTIR confirmed the presence of PVA, CS, GT, and VE in hydrogel films. As well as, the SEM images showed the effect of the freezing and thawing method in creating a smooth surface with small and regular pores. It was found with adding the CS and GT to PVA improves swelling ratio, gel fraction, WVTR and elongation of hydrogel films. Further, in examining the adhesion and cytotoxicity of the samples, the non-toxic quiddity of the PVA/CS/GT hydrogel films was corroborated. In the end, the antibacterial properties revealed that the film containing GT and CS had the greatest antibacterial activity. According to the observed results, PVA/CS/GT hydrogel films loaded with VE can be good for wound healing applications.  相似文献   

12.
莫名月  李国明 《广东化工》2009,36(6):50-51,254
制备了CS膜、交联CS膜、交联CS/CMCNa双层、多层复合膜以及ECH交联多层复合膜,考察了交联cs膜在不同介质中的降解,比较了上述几种膜材料在溶菌酶PBS溶液中的降解情况,对不同囊材载药微囊进行了体外降解实验。结果表明,交联cs膜在溶菌酶PBS溶液中降解速率最大。膜材料在溶菌酶PBS溶液中的降解速率与交联程度有关,载药微囊可以被溶菌酶降解。  相似文献   

13.
The purpose of these studies was to evaluate chitosan films impregnated with silver sulfadiazine as potential wound dressings, based on their mechanical properties and the controlled‐release phenomenon. The mechanical properties of such films were investigated under varying plasticizers (glycerol or sorbitol) concentrations, as well as in the presence of a crosslinking agent (formaldehyde). The drug release was also determined under such varying conditions, as well as using different thicknesses of film and drug concentrations. The results showed that the additives decreased the tensile strength of the chitosan films (except for sorbitol at 20% w/w), while at the same time remarkably enhancing the percentage elongation of the films. This elongation was especially pronounced in the case of glycerol. The type of plasticizer also influenced the release of silver sulfadiazine. Glycerol had a greater effect than sorbitol on the release rate, regardless of the amount used, probably due to leakage of this additive from the film, which leaves pores that enhance the water uptake of the film. As might be expected, increased concentrations of entrapped silver sulfadiazine yielded increasingly higher release rates. Decrease in thickness of the film also enhanced the release rate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3462–3470, 2006  相似文献   

14.
《Polymer Composites》2017,38(12):2829-2840
The biocompatible polymer films show potential as an alternative to gels and patches used for topical delivery of therapeutics and cosmetics. The physical strength and antimicrobial activity of polymer films are important attributes for their topical applicability. Here, we have investigated the physical properties and antibacterial activity of six commonly used film forming polymers before and after formation of nanocomposites with gold nanoparticles (AuNP). The blank and AuNP loaded polymer films were prepared by solvent casting method and characterized for thickness, tensile strength, burst strength, skin adhesion strength, degree of swelling, and porosity. The antibacterial activity of the composite films was evaluated by zone‐of‐inhibition and spectrophotometric growth inhibition method against Staphylococcus aureus and Escherichia coli . The physical characterization showed that chitosan films casted using 1.5% w/w resulted in 76 MPa of tensile strength, while zein films required 40% w/w to show 23 MPa of tensile strength. The AuNP (250 μM; 35 nm) loaded polymer films showed significantly (p < 0.05) greater burst strength and skin adhesion strength compared with respective blank films. Among the polymers tested, only blank films of chitosan and zein showed antibacterial activity. On the other hand, all the AuNP loaded polymer films showed significantly (p < 0.05) greater antibacterial activity. The AuNP loaded chitosan film showed E. coli growth inhibition similar to tetracycline. Taken together, chitosan‐ and zein‐AuNP nanocomposite films showed better physical properties and antibacterial activity. POLYM. COMPOS., 38:2829–2840, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
To inhibit the ototoxicity of gentamicin (GM) and overcome the drawback related to chitosan (CS) nanoparticles preparation in acid solution, O‐carboxymethyl chitosan (O‐CMC) nanoparticles loaded with GM and salicylic acid (SA) were prepared by ionic cross‐linking method using calcium chloride as crosslinking agent. The Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) were used to analyze the reaction of O‐CMC and crosslinking agent. The parameters of preparation of the compound nanoparticles including the concentration of O‐CMC, the mass ratio of O‐CMC to calcium chloride, and the feed ratio of SA to GM were investigated. The results showed that the obtained nanoparticles had a high zeta potential and drug‐loading capacity. The nanoparticles were characterized by a spherical morphology, with average size ranging from 148 to 345 nm and a narrow particle size distribution. In vitro release studies in phosphate buffer saline (pH 7.4) evidenced a burst release in the first 1 h, followed by a sustained release in the residual time. The release amount of SA and GM were approximately equal in 24 h, which indicated that the SA‐ and GM‐loaded O‐CMC nanoparticles are a promising carrier system for inhibiting the ototoxicity of GM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Injectable, de‐crosslinkable, and thermosensitive hydrogels are obtained by hydrazide‐functionalized poly(N‐isopropylacrylamide) and aldehyde‐functionalized dextrin through in situ crosslinked method. Natural based and degradable starch nanoparticles (SNPs) are used as fillers in order to improve mechanical property of hydrogels. Internal morphology, dynamic modulus, thermosensitivity property, de‐crosslinking performance, drug release, and in vitro cytotoxicity of hydrogels are investigated. Results show that SNPs disperse well throughout hydrogel and have no significant influence on gelation time and de‐crosslinking performance. Elasticity property of composite hydrogel prepared from 9.0 wt % precursors with 1.5 wt % fillers is improved significantly by SNPs and maximum storage modulus reaches 399.2 kPa, but 89.6 kPa of unreinforced hydrogels. Hydrogels exhibit good thermosensitive performance at alternating cyclic temperature of 25 and 37 °C. Doxorubicin hydrochloride‐loaded hydrogels can release more than 25 days. No significant cytotoxicity to L929 fibroblast cells is observed through a CCK‐8 assay for hydrogels, precursors, and SNPs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45761.  相似文献   

17.
Chitosan/hydroxyapatite (CS/HA) bone repair scaffolds crosslinked by glutaraldehyde (GA) were prepared. Characterization of morphology, structure, mechanical property, and porosity of scaffolds were evaluated. The influences of CS viscosity, HA content, and crosslinking degree on properties of scaffolds were discussed. SEM images showed that CS/HA scaffolds were porous with short rod‐like HA particles dispersing evenly in CS substrate. When [η]CS = 5.75 × 10?4, HA content = 65%, and crosslinking degree = 10%, the resulting CS/HA scaffolds had a flexural strength of 20 MPa and porosity of 60%, which could meet the requirements of bone repair materials. The scaffolds were used as drug carriers for icariin, and the impacts of loading time and crosslinking degree of scaffolds on drug‐loading dose were discussed. The suitable loading time was 24 h and it would be better to keep crosslinking degree no more than 10%. The drug release behavior demonstrated that the icariin‐loading CS/HA scaffolds could achieve basic drug sustained release effect. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1539–1547, 2013  相似文献   

18.
To prepare antibacterial, polymeric catheters for preventing catheter‐induced infections, sulfathiazole was loaded into polyurethane by solubilizing with solvents and the resultant films were cast. Fourier transform infrared spectroscopy confirmed the presence of sulfathiazole in the drug‐loaded polyurethane films. The thermal and mechanical properties of the films were assessed using differential scanning calorimetry and dynamic mechanical analysis. The drug‐loaded films were immersed in constantly stirred, deionized water at 37 °C for in vitro drug release study. The experimental data obtained from the in vitro drug release study were fit into mathematical models. Antibacterial efficiency of released sulfathiazole was evaluated by Escherichia coli growth inhibition test. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46467.  相似文献   

19.
Bioactive wound dressings from poly(vinyl alcohol) (PVA) and zein nanoparticles (NPs) loaded with diclofenac (DLF) were prepared successfully by the single jet electrospinning method. DLF‐loaded zein NPs with an average diameter of ~228 nm were prepared using anti‐solvent precipitation method. The formulation of zein:DLF 1:1 exhibited optimum encapsulation efficiency of 47.80%. The NPs were characterized by dynamic light scattering, zeta‐potential measurement, and differential scanning calorimetry. In vitro, drug release profiles of the DLF‐loaded zein NPs, and PVA–zein NPs were also studied within 120 h and showed the release efficiency of nearly 80% from zein NPs. A more controlled release of DLF was achieved by embedding the zein NPs in the PVA nanofibers. Fourier transform infrared spectroscopy was used to analyze possible interactions between different components of the fabricated dressings. The mechanical properties of the developed dressings were also evaluated using uniaxial tensile testing. Young's modulus (E) of the dressings decreased after inclusion of zein NPs within the PVA nanofibers. Moreover, fibroblast culturing experiments proved that the composite dressings supported better cell attachment and proliferation compared to PVA nanofibers, by exhibiting moderate hydrophilicity. The results suggested that the electrospun composite dressing of PVA nanofibers and zein NPs is a promising topical drug‐delivery system and have a great potential for wound healing application. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46643.  相似文献   

20.
In this study, a series of theophylline‐loaded calcium pectin gel films were prepared in three different Ca+2 concentrations with three different methods for wound dressing applications. Drug release performance of the films were investigated in four different medium pH in order to mimic wound healing pH conditions. Hydrogel films were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy and atomic force microscopy. Their absorbency (fluid handling), swelling behavior, dehydration rate, dispersion characteristic, dressing pH determination, water vapor permeability, oxygen permeability, surface contact angle, flexibility, Shore A hardness, mean mass per unit area and thickness were determined. The effect of the hydrogels on wound healing was evaluated with an in vitro wound healing assay. After evaluating all data, we suggested that the hydrogel film prepared with swelling method using 7% or 10% crosslinker and dried at 26 °C is more suitable for controlled drug release process. We showed that between pH 3.25 and 7.12 the form of the hydrogel did not change, and drug release was continuous. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46731.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号