首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A solid amine adsorbent was prepared by modifying a porous polystyrene resin (XAD‐4) with chloroacetyl chloride through a Friedel–Crafts acylation reaction, followed by aminating with tetraethylenepentamine (TEPA). The adsorption behavior of CO2 from a simulated flue gas on the solid amine adsorbent was evaluated. Factors that could determine the CO2 adsorption performance of the adsorbents such as amine species, adsorption temperature, and moisture were investigated. The experimental results showed that the solid amine adsorbent modified with TEPA (XAD‐4‐TEPA), which had a longer chain, showed an amine efficiency superior to the other two amine species with shorter chains. The CO2 adsorption capacity decreased obviously as the temperature increased because the reaction between CO2 and amine groups was an exothermic reaction, and its adsorption amount reached 1.7 mmol/g at 10 °C in dry conditions. The existence of water could significantly increase the CO2 adsorption amount of the adsorbent by promoting the chemical adsorption of CO2 on XAD‐4‐TEPA. The adsorbent kept almost the same adsorption amount after 10 cycles of adsorption–desorption. All of these results indicated that amine‐functionalized XAD‐4 resin was a promising CO2 adsorbent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45046.  相似文献   

2.
A new magnetic cellulose hybrids anchored with quaternary amine moieties were fabricated and used in recovering Pt(IV) ions from acidic solutions. Kinetic and thermodynamic parameters of adsorption process were reported through using batch experiments. An equilibrium uptake capacity of 178 mg g?1 was achieved within 55 min. The adsorption process was found to follow the pseudo-second-order kinetics and fitted well Langmuir and D-R adsorption isotherms revealing monolayer surface coverage and physisorption mechanism, respectively. At low pH values and high chloride concentration ranges, ion exchange was proposed as the predominant mechanism for the adsorption of Pt(IV) ions on the sorbent. The obtained sorbent showed good durability, easy separation, and regeneration from the adsorption medium.  相似文献   

3.
A biomass waste of microalgae was chemically modified by immobilizing the functional group of polyethyleneimine to prepare a new type of adsorbent. The adsorption test revealed that this adsorbent exhibited remarkably high selectivity for Pd(II) and Pt(IV) over base metal ions in HCl solution. From the adsorption isotherm, its maximum adsorption capacity for Pd(II) and Pt(IV) was evaluated as 2.0 and 0.8 mmol/g, respectively. This adsorbent also exhibited high affinity and selectivity for Pd(II) and Pt(IV) even in the presence of high concentrations of base metals in actual leach liquor.  相似文献   

4.
A novel magnetic adsorbent alginate/polyethyleneimine (ALG/PEI)n/MN was developed for removal of anionic dyes from aqueous solution in this study. (ALG/PEI)n/MN was prepared by depositing ALG/PEI multi‐layers onto amine‐modified Fe3O4 microspheres through layer‐by‐layer method. The morphologies and structures of the adsorbent were characterized by scanning electron microscopy, X‐ray diffractometer, and Fourier transform infrared spectrometer, respectively, and its performance in adsorption of anionic dye (acid orange 10, AO10) under varied experimental conditions were also investigated. The results revealed that the uptake capacity of AO10 by (ALG/PEI)n/MN increased with the number of coated (ALG/PEI) bilayer on the adsorbents, and the maximum adsorption capacity for AO10 by (ALG/PEI)4MN was 246.3 mg g?1 at 25 °C. The adsorption process was exothermic and well described by the pseudo‐second order kinetic model and the Langmuir isothermal model. Moreover, (ALG/PEI)4/MN showed good reusability and excellent magnetic separability. All the results demonstrate that (ALG/PEI)4/MN is a potential recyclable adsorbent for removal of anionic dyes from wastewater. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45876.  相似文献   

5.
Aiming at efficient recovery of platinum (Pt) from aqueous solution, the aminated polyethylene/polypropylene non-woven fabric (PE/PP NWF) was synthesized via radiation grafting of glycidyl methacrylate (GMA), followed by ring-opening reaction with polyethyleneimine (PEI). The effects of different parameters, including pH, sorption time, initial Pt(IV) concentration, competing ions and adsorbent dosage on the Pt(IV) adsorption performance were investigated by batch adsorption tests. A high Pt(IV) adsorption capacity of 485.0 mg g−1 (initial concentration: 263.5 mg L−1) was achieved, and the adsorption kinetics and isotherm conformed to the pseudo-second-order model and the Langmuir isotherm model, respectively. Moreover, the PEI functionalized PE/PP NWF exhibited excellent adsorption performance over the wide pH range (1–6), and also good selectivity for Pt(IV) over multiple coexisting metal cations (Ni, Cu, Co, Pb, Mg, and Zn). The recovery ratio of Pt from spent proton exchange membrane fuel cell (PEMFC) catalysts reached 89.7% after three cycles of regeneration.  相似文献   

6.
Fiber membrane adsorbent not only has the advantage of ease of handling, but also offers high specific surface area that can benefit the adsorption process when compared with powdered adsorbent. In this work, a poly(2‐aminothiazole) (PAT)/cellulose acetate (CA) composite fiber membrane is prepared by a coaxial electrospinning process, and used as adsorbent for removing Hg(II) from water. The adsorption processes are investigated as functions of pH value, contact time and temperature. The results suggest that the Hg(II) adsorption is preferred to be conducted at pH 6.5 and the adsorption is a monolayer process through chemical interaction. The maximum adsorption capacity in theory is 177 mg/g at 298 K with a very low PAT percentage (6.5 wt %), which is much higher than that of the nanoparticle‐type PAT through conversion. Desorption results exhibit excellent reusability of the composite fiber membrane. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44879.  相似文献   

7.
A novel, bioadsorbent material of polyethylenimine‐modified magnetic chitosan microspheres enwrapping magnetic silica nanoparticles (Fe3O4–SiO2–CTS‐PEI) was prepared under relatively mild conditions. The characterization results indicated that the adsorbent exhibited high acid resistance and magnetic responsiveness. The Fe3O4 loss of the adsorbent was measured as 0.09% after immersion in pH 2.0 water for 24 h, and the saturated magnetization was 11.7 emu/g. The introduction of PEI obviously improved the adsorption capacity of Cr(VI) onto the adsorbent by approximately 2.5 times. The adsorption isotherms and kinetics preferably fit the Langmuir model and the pseudo‐second‐order model. The maximum adsorption capacity was determined as 236.4 mg/g at 25°C, which was much improved compared to other magnetic chitosan materials, and the equilibrium was reached within 60 to 120 min. The obtained thermodynamic parameters revealed the spontaneous and endothermic nature of the adsorption process. Furthermore, the Cr(VI)‐adsorbed adsorbent could be effectively regenerated using a 0.1 mol/L NaOH solution, and the adsorbent showed a good reusability. Due to the properties of good acid resistance, strong magnetic responsiveness, high adsorption capacity, and relatively rapid adsorption rate, the Fe3O4–SiO2–CTS‐PEI microspheres have a potential use in Cr(VI) removal from acidic wastewater. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43078.  相似文献   

8.
An investigation was conducted on the adsorption and desorption of copper(II) from aqueous solutions with a new spherical cellulose adsorbent containing the carboxyl anionic group. Various factors affecting the adsorption were optimized. The adsorption of Cu2+ ions on the adsorbent was found to be dependent on the initial time and pH, the concentration, and the temperature. The adsorption process follows both Freundlich and Langmuir adsorption isotherms and was found to be endothermic (ΔH = 23.99 kJ/mol). The Cu2+ ions adsorbed on the adsorbent can be recovered with a NaOH or HCl aqueous solution. The maximum percentage of recovery is about 100% when 2.4 mol/L HCl solution is used. In addition, only 7.2% of the adsorption capacity is lost after 30 replications of the adsorption and desorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 478–485, 2002; DOI 10.1002/app.10114  相似文献   

9.
A series of nonporous, amine‐functionalized sodium titanates was prepared and the thermal and adsorptive behavior of the samples were characterized. Engelhard titanosilicate 2 was chosen as a substrate for its high surface area (~300 m2/g), native surface hydroxyl concentration, and lack of microporosity; eliminating the risk of fouling the adsorbent under certain process conditions. Aminosilanes containing a single (N1), two (N2), and three (N3) amine groups were chemically grafted to the surface of the substrate and the adsorption capacity for CO2 measured through thermogravimetry‐mass spectroscopy (TG‐MS) desorption, volumetric adsorption, and gravimetric adsorption/desorption cycling. The N3 sample displayed complete monolayer coverage and was capable of adsorbing five times as much atmospheric CO2 as the N1 sample. Testing under anhydrous conditions only engages the primary amine on the tether and the data consistently suggests a correlation between amine utilization and the proportion of monolayer coverage for these adsorbents. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4727–4734, 2013  相似文献   

10.
A series of cellulose/polyaniline derivatives [polyaniline (PANI), poly(N‐methylaniline) (PNMANI), and poly(N‐ethylaniline) (PNEANI)] nanocomposites were synthesized by in situ chemical oxidation polymerization method and successfully applied for removal of acid red 4 and direct red 23 dyes from simulated industrial effluents. The synthesized nanocomposites were analyzed using Fourier transform infrared and ultraviolet‐visible spectroscopies, thermogravimetric analysis and scanning electron microscope. The effect of some parameters including pH, adsorbent amount, and initial dyes concentrations on adsorption processes were evaluated. The maximum adsorption capacities (Qm) for the synthesized nanocomposites were calculated, and among them the Cell/PANI sample showed the highest Qm for both AR4 (117 mg g–1) and DR23 (56 mg g–1) dyes. The regeneration and reusability tests exhibited that the synthesized nanocomposites had the relatively good reusability after five repetitions of the adsorption–desorption cycles. According to results, we envision that these nanocomposites, especially Cell/PANI, find application for removal of anionic dyes from industrial effluents mainly due to their low production costs, high adsorption effectiveness, and relatively good reusability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45352.  相似文献   

11.
A kind of adsorbent, strong alkaline anion exchange fiber loaded with zirconium strong alkaline anion exchange fiber (Zr@SAAEF) was prepared. Zr(IV) was uniformly distributed on SAAEF through chemical bonds and physical deposition. Zr@SAAEF has a decent effect on the removal of fluorine in water and scanning electron microscopy images and Fourier transform infrared spectroscopy spectrum showed that the Zr(IV) was successfully loaded on the fiber by chemical bonding. The average adsorption capacity of fluorine was 28.14 mg/g with pH ranging from 5.0 to 8.9, when fluorine solution (100 mg/L) was adsorbed by 0.1 g SAAEF, and the extent of removal exceed 96% when the adsorbent dose was 0.3 g. The adsorption isotherms were well fitted with Langmuir equation, and the maximum adsorption capacities calculated by Langmuir equation were close to the experiment results. The adsorption was an endothermic reaction. These results implied that fluorine adsorption onto Zr@SAAEF belonged to chemical adsorption using monolayer coverage on surface of the fiber. The adsorption kinetics of fluorine onto Zr@SAAEF could be described by pseudo‐second‐order rate mode. Zr@SAAEF showed a decent ability for fluorine removal from aqueous solution. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45855.  相似文献   

12.
A novel adsorbent, amino-alky cellulose (AmAC), is prepared by chlorination and amination of hydroxyethyl cellulose (HEC). AmAC are characterized by 13C-NMR and used as adsorbent to remove 2, 4, 6-trinitrotoluene (TNT) from waste water. Effects of various parameters including solvent and amine group content are studied. Adsorption mechanisms are also analyzed. Results show that the maximum adsorption capacity is 69.23 mg g?1 and removal efficiency of 99.30%, while the adsorption deeds are attributed to the hydrogen bond between TNT molecules and amino-alky cellulose. The equilibrium sorption is well demonstrated by Freundlich isotherm model. The reusability experiment shows the adsorbed TNT could be desorbed by ethanol eluant when the pH is 1.  相似文献   

13.
An adsorbent for CO2 capture was prepared by the grafting of acrylonitrile (AN) onto viscose fibers (VFs); this was followed by amination with triethylene tetramine (TETA). The effects of the reaction conditions, such as the concentrations of the monomer, initiator, and nitric acid, on the grafting degree and grafting efficiency were studied. The adsorption performance of the adsorbent for CO2 was evaluated by fixed‐bed adsorption. The highest dynamic adsorption capacity of the adsorbent for CO2 was 4.35 mmol/g when the amine content of the adsorbent VF–AN–TETA reached 13.21 mmol/g. Compared with the polypropylene (PP)‐fiber‐based adsorbent (PP–AN–TETA), VF–AN–TETA with hydroxyl groups on the fibers facilitated the diffusion of CO2 and water and led to a higher CO2 adsorption capacity than that of PP–AN–TETA. The VF–AN–TETA adsorbent also showed good regeneration performance: its CO2 adsorption capacity could still retain almost the same capacity as the fresh adsorbent after 10 adsorption–desorption cycles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42840.  相似文献   

14.
《分离科学与技术》2012,47(8):1185-1193
Microalgal residue was chemically modified by immobilizing a functional group of dithiooxamide to prepare a novel type of adsorbent. This adsorbent exhibited high adsorption affinity and selectivity for Pd(II) and Pt(IV) whereas the adsorption of coexisting base metal ions was negligible. From the adsorption isotherms, this adsorbent was found to exhibit remarkably high adsorption capacity. The thermodynamic parameters indicated that the adsorption is governed by an endothermic reaction. The effective separation of Pd(II) and Pt(IV) from Cu(II) was confirmed also by a dynamic adsorption test. The effectiveness of elution of adsorbed Pd(II) and Pt(IV) was 85% and 96%, respectively.  相似文献   

15.
In this study, magnetic chitosan modified with thiosemicarbazide (TSC‐Fe3O4/CTS) was facilely synthesized with glutaraldehyde as the crosslinker, and its application for removal of Cu(II) ions was investigated. The as‐prepared TSC‐Fe3O4/CTS was characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffraction (XRD), and scanning electron microscopy (SEM). The results showed that TSC‐Fe3O4/CTS has high adsorption capacity and selectivity towards Cu(II) ions. Adsorption experiments were carried out with different parameters such as pH, solution temperature, contact time and initial concentration of Cu(II) ions. The adsorption process was better described by the pseudo‐second‐order model. The sorption equilibrium data was fitted well with the Langmuir isotherm model and the maximum adsorption capacity toward Cu(II) ions was 256.62 mg/g. The thermodynamic parameters indicated that the adsorption process of Cu(II) ions was exothermic spontaneous reaction. Moreover, this adsorbent showed excellent reusability and the adsorption property remained stable after five cycles. This adsorbent is believed to be one of the promising and favorable adsorbent for the removal of Cu(II) ions from aqueous solution. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44528.  相似文献   

16.
A novel magnetic adsorbent, poly(catechol‐1,4‐butanediamine)‐coated Fe3O4 composite (Fe3O4@PCBA), was successfully fabricated via an easy and gentle method according to the mussel‐inspired adhesion property of polydopamine. Effects of many factors on the adsorption performance of Fe3O4@PCBA for Cr(VI) were investigated, including temperature, pH value, contacting time, adsorbent dosage, and initial Cr(VI) concentration. The thermodynamics, adsorption isotherm, kinetics, and intraparticle diffusion of adsorption were also studied systematically. Results indicated that the removal rate of Cr(VI) was approximately close to 100% when the initial concentration was less than 120 mg/L, and the maximum uptake capacity of Fe3O4@PCBA for Cr(VI) was 280.11 mg/g complied with Langmuir isotherm model. Accordingly, the nocuous Cr(VI) could be partially reduced to Cr(III) during the adsorption period. Hopefully, this strategy could be extended to prepare series of magnetic Fe3O4@catechol–amine adsorbents with different amino and phenolic hydroxyl groups for Cr(VI) removal. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46530.  相似文献   

17.
《分离科学与技术》2012,47(14):2250-2259
Persimmon tannin was chemically modified to prepare a quaternary amine type of adsorption gel, named as quaternary amine modified persimmon tannin (QAPT) gel. The QAPT gel has been used to investigate the adsorption behaviors for Au(III), Pd(II), and Pt(IV) from HCl media. It was found that the gel exhibited good selectivity towards precious metals over a wide concentration range of HCl. However, it exhibited poor affinity towards base metals such as Cu(II), Fe(III), Ni(II), and Zn(II). The adsorption isotherms of the gel for precious metal ions were described by the Langmuir model. The maximum adsorption capacities for Au(III), Pd(II), and Pt(IV) were evaluated as 4.16, 0.84, and 0.52 mmol g?1, respectively. Although the anion exchange is the main mechanism for the adsorption of anionic species of Au(III), Pt(IV), and Pd(II), adsorption of Au(III) is followed by subsequent reduction, which results in the extraordinary high adsorption capacity for Au(III). Adsorption behavior of QATP gel for Au(III) was also compared to that of the persimmon tannin, the feed material.  相似文献   

18.
The adsorption and heat‐energy‐aid desorption of methylene blue (MB) on a thermo‐sensitive adsorbent of methyl cellulose/calcium alginate beads (MC/CABs) has been studied. The addition of methyl cellulose intensified the desorption ability of adsorbent, and boosted the difference of adsorption capacity of adsorbent between low temperature and high temperature. At the mass ratio of methyl cellulose to sodium alginate of 2:1, the difference of adsorption capacity of MC/CABs between 20 and 60°C reached 20.48 mg g?1. The effects of temperature, time and initial MB concentration on adsorption performance were investigated in detail. The MB adsorption on MC/CABs followed the pseudo‐second‐order kinetic model. The equilibrium data was fitted well with Langmuir isotherm. The maximum adsorption capacity of 336.70 mg g?1 exhibited MC/CABs had a good adsorption capability. Thermodynamic analyses showed high temperature was not favorable to MB adsorption, and MC/CABs had a distinct superiority in desorption of adsorbate with heat‐energy‐aid. Lastly, the possible mechanisms involving in adsorption and heat‐energy‐aid desorption were presented. POLYM. ENG. SCI., 56:1382–1389, 2016. © 2016 Society of Plastics Engineers  相似文献   

19.
An aminothiourea chitosan modified magnetic biochar composite (TMBC) was prepared for the efficient removal of Cd(II) from wastewater. The synthesized materials were characterized, and the detailed adsorption mechanisms and thermodynamics were studied. The adsorption experiments revealed that TMBC had a higher affinity for Cd(II) than the magnetic biochar composite, raw biochar, and other carbon‐based adsorbents did. The Cd(II) adsorption process fit the pseudo‐second‐order kinetic model, and the maximum adsorption capacities on the basis of the Langmuir model were 93.72, 121.9, and 137.3 mg/g at 298, 308, and 318 K, respectively. The practical efficacy of the adsorbent was also tested with a real mine water. The metal‐ion‐loaded TMBC could be conveniently collected by a magnet and could be easily regenerated with adsorption efficiencies up to 84% after five adsorption–desorption cycles. The as‐prepared TMBC might be a promising adsorbent for the treatment of heavy‐metal‐ion‐contaminated water or highly mineralized mine water. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46239.  相似文献   

20.
A novel porous composite adsorbent was prepared by using sodium alginate and hydroxyl ethyl cellulose blending as an immobilization matrix for humic acid, then crosslinked by glutaraldehyde. The adsorbent was prepared using polyethylene glycol (PEG) as porogen and used to remove Cd(II) ions from aqueous solution. The physico-chemistry properties of adsorbent before and after adsorption were investigated by FT-IR, SEM and EDX methods. Batch adsorption experiments were carried out to investigate the effects of the amount of PEG adding to the adsorbent, solution pH, dosage of adsorbent, initial Cd(II) ions concentration and contact time. The prepared adsorbent exhibited the maximum uptake of 148.9 mg/g under the optimal adsorption condition. Kinetics experiments indicated that the pseudo-first-order model displayed the best correlation with adsorption kinetics data. The Crank model showed that the intraparticle solute diffusion was the rate-controlling adsorption step. Besides, experimental data could be better described by the Freundlich isotherm model. Dubinin–Radushkevich isotherm indicated that the adsorption was mainly an ion exchange process. The results suggested that the prepared adsorbent is promising for using as an effective and economical adsorbent for Cd(II) ions removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号