首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this study, nanofiber cellulose (NFC) based on a 2,2,6,6‐tetramethylpiperidine‐1‐oxyl radical oxidization method was successfully combined with chain‐end‐functionalized polyethylene containing alkoxysilane via silanization. Fourier transform infrared spectroscopy, transmission electron microscopy, contact angle measurements, Molau tests, and X‐ray photoelectron spectroscopy analyses provided further evidence for the effectiveness of the surface modifications. The hydrophilic surface characteristics of NFC were changed to apparently hydrophobic for the modified nanofiber cellulose (M‐NFC). Then, the linear low‐density polyethylene (LLDPE)/M‐NFC nanocomposite was prepared, and the mechanical properties, thermal properties, and crystallization properties of the LLDPE–M‐NFC were investigated by tensile testing, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. The results show that after modification, the thermal stability of NFC was enhanced. The interface between M‐NFC and the matrix was good. The tensile strength and Young's modulus values of the nanocomposites were enhanced compared with those of LLDPE; in particular, the tensile strength and Young's modulus of the blend with 5 wt % M‐NFC increased by 56 and 106%, respectively. The storage modulus of the nanocomposites was enhanced obviously over a wide temperature range. The addition of a small amount of M‐NFC had slight effects on the crystallinity and melting temperature of LLDPE. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45387.  相似文献   

2.
Poly(ethylene terephthalate)/multiwalled carbon nanotubes (PET/MWCNTs) with different MWCNTs loadings have been prepared by in situ polymerization of ethylene glycol (EG) containing dispersed MWCNTs and terephthalic acid (TPA). From scanning electronic microscopy images of nanocomposites, it can be clearly seen that the PET/MWCNTs composites with low‐MWCNTs contents (0.2 and 0.4 wt %) get better MWCNTs dispersion than analogous with high‐tube loadings (0.6 and 0.8 wt %). The nonisothermal crystallization kinetics was analyzed by differential scanning calorimetry using Mo kinetics equation, and the results showed that the incorporation of MWCNTs accelerates the crystallization process obviously. Mechanical testing shows that, in comparison with neat PET, the Young's modulus and the yield strength of the PET nanocomposites with incorporating 0.4 wt % MWCNTs are effectively improved by about 25% and 15%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The effects of different surfactants on the properties of multiwalled carbon nanotubes/polypropylene (MWCNT/PP) nanocomposites prepared by a melt mixing method have been investigated. Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as a means of noncovalent functionalization of MWCNTs to help them to be dispersed uniformly into the PP matrix. The effects of these surfactant‐treated MWCNTs on morphological, rheological, thermal, crystalline, mechanical, and electrical properties of MWCNT/PP composites were studied using field emission scanning electron microscopy, optical microscopy, rheometry, tensile, and electrical conductivity tests. It was found that the surfactant‐treatment and micromixing resulted in a great improvement in the state of dispersion of MWCNTs in the polymer matrix, leading to a significant enhancement of Young's modulus and tensile strength of the composites. For example, with the addition of only 2 wt % of SDS‐treated and NaDDBS‐treated MWCNTs, the Young's modulus of PP increased by 61.1 and 86.1%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
In the present work, chitosan (CS)‐grafted multiwalled carbon nanotube (MWCNT) nanocomposites were prepared via covalently bonded CS onto MWCNTs that had weight fractions of MWCNTs ranging from 0.1 to 3.0 wt % by a simple method of solution casting. The structure, morphology, and mechanical properties of the films were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, optical microscopy, wide‐angle X‐ray diffraction, contact angle, and tensile testing. The results indicated that the CS chains were attached onto the MWCNTs successfully via covalent linkages. More interestingly, the MWCNTs provided a matrix that facilitated the crystallization of CS. Compared with the pure CS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 39.6 to 105.6 MPa and from 2.01 to 4.22 GPa with an increase in the MWCNT loading level from 0 to 3.0 wt %, respectively. The improvement in the tensile strength and modulus were ascribed to the uniform dispersion of MWCNTs covalently linked to the CS matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
In this work we have studied the utilization of multiwalled carbon nanotubes (MWCNTs) as filler‐reinforcement to improve the performance of plasticized starch (PS). The PS/MWCNTs nanocomposites were successfully prepared by a simple method of solution casting and evaporation. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of scanning electron microscopy, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile testing. The results indicated that the MWCNTs dispersed homogeneously in the PS matrix and formed strong hydrogen bonding with PS molecules. Compared with the pure PS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 2.85 to 4.73 MPa and from 20.74 to 39.18 MPa with an increase in MWCNTs content from 0 to 3.0 wt %, respectively. The value of elongation at break of the nanocomposites was higher than that of PS and reached a maximum value as the MWCNTs content was at 1.0 wt %. Besides the improvement of mechanical properties, the incorporation of MWCNTs into the PS matrix also led to a decrease of water sensitivity of the PS‐based materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Nanocomposites of isotactic polypropylene (iPP) and multiwalled carbon nanotubes (MWCNTs) with various contents of MWCNTs were fabricated by double molding techniques. X‐ray diffraction measurements reveal a development of α‐crystal with lamellar stacks having a long period of 150 Å in the neat iPP that increases to 165 Å in 2 wt % MWCNTs‐loaded composites, indicating that MWCNTs enhance crystallization of iPP as a nucleating factor. Mechanical properties, such as tensile strength, flexural strength, Young's modulus, tangent modulus, and microhardness are found to increase with increasing MWCNTs content. Thermal analyses represent an increase of crystallization and melting temperatures and a decrease of thermal stability of the composites with increasing MWCNTs. Changes in structural, mechanical, and thermal properties of the composites due to the addition of MWCNTs are elaborately discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The reinforcement of mechanical properties of polymeric materials is often important for widening their applications; however, it remains a technical challenge to effectively increase toughness without degrading stiffness and strength of the polymers. In this work, by a facile methodology combining solution mixing and melt blending, poly(vinylidene fluoride)/multi‐walled carbon nanotubes (PVDF/MWCNTs) composite with exceptionally enhanced ductility and toughness are prepared. With only 0.2 wt % CNT loading, the elongation at break has increased from originally 138% to almost 500%, while toughness improved by as much as 386%, without compromising the stiffness and strength. Note that raw CNTs are directly dispersed in the matrix without any surface modification. In order to elucidate this novel enhancement of ductility of PVDF/MWCNTs composites, we carried out detailed analyses based on results from ultra‐small‐angle X‐ray scattering (USAXS), cryo‐fractured surface morphology, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). It is proposed that the enhanced ductility are contributed by a synergistic combination of “void pinning effect” of CNT, as well as the formation of γ phase polymorph as the interphase in the PVDF/CNTs composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43610.  相似文献   

8.
Graphene‐nanoplateles (Gr) and multiwalled carbon nanotubes (CNTs) reinforced epoxy based composites were fabricated using ultrasonication, a strong tool for effective dispersion of Gr/CNTs in epoxy. The effect of individual addition of two different nanofillers (Gr and CNT) in epoxy matrix, for a range of nanofiller content (0.1–1 wt %), has been investigated in this study. This study compares mechanical and thermomechanical behavior of Gr and CNT reinforced epoxy. Gr reinforcement offers higher improvement in strength, Young's modulus, and hardness than CNT, at ≤0.2 wt %. However, mode‐I fracture toughness shows different trend. The maximum improvement in fracture toughness observed for epoxy‐Gr composite was 102% (with 0.3 wt % loading of Gr) and the same for epoxy‐CNT composite was 152% (with 0.5 wt % loading of CNT). Thorough microstructural studies are performed to evaluate dispersion, strengthening, and toughening mechanisms, active with different nanofillers. The results obtained from all the studies are thoroughly analyzed to comprehend the effect of nanofillers, individually, on the performance of the composites in structural applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46101.  相似文献   

9.
Multi-walled carbon nanotubes (MWCNTs) are often reported as additives improving mechanical and functional properties of ceramic composites. However, despite tremendous efforts in the field in the past 20 years, the results are still inconclusive. This paper studies room temperature properties of the composites with polycrystalline alumina matrix reinforced with 0.5–2 vol.% MWCNTs (composites AC) and zirconia toughened alumina with 5 vol.% of yttria partially stabilised zirconia (3Y-PSZ) containing 0.5–2 vol.% of MWCNTs (composites AZC). Dense composites were prepared through wet mixing of the respective powders with functionalised MWCNTs, followed by freeze granulation, and hot-pressing of granulated powders. Room temperature bending strength, Young's modulus, indentation fracture toughness, thermal and electrical conductivity of the composites were studied, and related to their composition and microstructure. Slight increase of Young's modulus, indentation fracture toughness, bending strength, and thermal conductivity was observed at the MWCNTs contents ≤1 vol.%. At higher MWCNTs contents the properties were impaired by agglomeration of the MWCNTs. The DC electrical conductivity increased with increasing volume fraction of the MWCNTs.  相似文献   

10.
In this work, stereocomplex‐poly(l ‐ and d ‐lactide) (sc‐PLA) was incorporated into poly(ε‐caprolactone) (PCL) to fabricate a novel biodegradable polymer composite. PCL/sc‐PLA composites were prepared by solution casting at sc‐PLA loadings of 5–30 wt %. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) demonstrated the formation of the stereocomplex in the blends. DSC and WAXD curves also indicated that the addition of sc‐PLA did not alter the crystal structure of PCL. Rheology and mechanical properties of neat PCL and the PCL/sc‐PLA composites were investigated in detail. Rheological measurements indicated that the composites exhibited evident solid‐like response in the low frequency region as the sc‐PLA loadings reached up to 20 wt %. Moreover, the long‐range motion of PCL chains was highly restrained. Dynamic mechanical analysis showed that the storage modulus (E′) of PCL in the composites was improved and the glass transition temperature values were hardly changed after the addition of sc‐PLA. Tensile tests showed that the Young's modulus, and yield strength of the composites were enhanced by the addition of sc‐PLA while the tensile strength and elongation at break were reduced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40208.  相似文献   

11.
Crosslinked polystyrene‐multiwalled carbon nanotube (PS‐MWCNT) balls, which act as conductive microfillers, were prepared by the in situ suspension polymerization of styrene with MWCNTs and divinyl benzene (DVB) as a crosslinking agent. The diameters of the synthesized crosslinked PS‐MWCNT balls ranged from 10 to 100 μm and their electrical conductivity was about 7.7 × 10?3 S/cm. The morphology of the crosslinked PS‐MWCNT balls was observed by scanning electron microscopy and transmission electron microscopy. The change in the chemical structure of the MWCNTs was confirmed by Raman spectroscopy and Fourier transform infrared spectroscopy. The mechanical and electrical properties of the PS/crosslinked PS‐MWCNT ball composites were investigated. It was found that the tensile strength, ultimate strain, Young's modulus, and impact strength of the PS matrix were enhanced by the incorporation of the crosslinked PS‐MWCNT balls. In addition, the mechanical properties of the PS/crosslinked PS‐MWCNT ball composites were better than those of the PS/pristine MWCNT composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The effects of applying titanate (TYZOR® TPT) and silane (DYNASYLAN VTMO) coupling agents to wet ground muscovite mica in nylon‐6 composites are described. Nylon‐6 composites of 5–40 wt % filler loadings were compounded using an APV Baker twin‐screw extruder. Mica (25 wt %) brought about an increase in the Young's modulus, flexural strength, and flexural modulus but did not produce significant variations in tensile and impact strength. Hence different coupling agents were employed. It was observed that titanate coupling agent improved the tensile strength and the Young's modulus of the composites much while the impact properties were enhanced by the silane coupling agent. An attempt was made to use ?‐caprolactum in improving the interfacial adhesion of the filler and the matrix. It was observed that ?‐caprolactum improved the flexural modulus of the composites most. The effect of coupling agents on the dielectric strength, heat distortion temperature, and morphology were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4074–4081, 2006  相似文献   

13.
Silica nanoparticles and multiwalled carbon nanotubes (MWCNTs) have been incorporated into an anhydride‐cured epoxy resin to form “hybrid” nanocomposites. A good dispersion of the silica nanoparticles was found to occur, even at relatively high concentrations of the nanoparticles. However, in contrast, the MWCNTs were not so well dispersed but relatively agglomerated. The glass transition temperature of the epoxy polymer was 145°C and was not significantly affected by the addition of the silica nanoparticles or the MWCNTs. The Young's modulus was increased by the addition of the silica nanoparticles, but the addition of up to 0.18 wt % MWCNTs had no further significant effect. The addition of both MWCNTs and silica nanoparticles led to a significant improvement in the fracture toughness of these polymeric nanocomposites. For example, the fracture toughness was increased from 0.69 MPam1/2 for the unmodified epoxy polymer to 1.03 MPam1/2 for the hybrid nanocomposite containing both 0.18 wt % MWCNTs and 6.0 wt % silica nanoparticles; the fracture energy was also increased from 133 to 204 J/m2. The mechanisms responsible for the enhancements in the measured toughness were identified by observing the fracture surfaces using field‐emission gun scanning electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Functionalized reduced graphene oxide (GO)/epoxy composites are fabricated through solution mixing. GO is functionalized using 3‐amino‐1,2,4‐triazole (TZ) in presence of potassium hydroxide (KOH). KOH is expected to serve dual role as catalyst for nucleophilic addition reaction between GO and TZ, and also as reducing agent. The grafting of TZ moiety on GO is confirmed by Fourier transform infrared spectroscopy, X‐ray diffraction, and thermogravimetric analysis. The prepared composites show remarkable improvement in mechanical and thermal stability. The fracture toughness of the composites (critical stress intensity factor, KIC) achieved from single edge notched bending testing is improved by ~111% against pure epoxy at 0.1 wt % loading of TZ functionalized GO. Further, the tensile strength and Young's modulus are improved by ~30.5% and 35%, respectively. Thermal stability of the composites as investigated by thermogravimetric analysis showed 29 °C rise in onset degradation temperature for 0.1 wt % TZ functionalized GO incorporated composite. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46124.  相似文献   

15.
Industrial hemp fibers were treated with a 5 wt % NaOH, 2 wt % Na2SO3 solution at 120°C for 60 min to remove noncellulosic fiber components. Analysis of fibers by lignin analysis, scanning electron microscopy (SEM), zeta potential, Fourier transform infrared (FTIR) spectroscopy, wide angle X‐ray diffraction (WAXRD) and differential thermal/thermogravimetric analysis (DTA/TGA), supported that alkali treatment had (i) removed lignin, (ii) separated fibers from their fiber bundles, (iii) exposed cellulose hydroxyl groups, (iv) made the fiber surface cleaner, and (v) enhanced thermal stability of the fibers by increasing cellulose crystallinity through better packing of cellulose chains. Untreated and alkali treated short (random and aligned) and long (aligned) hemp fiber/epoxy composites were produced with fiber contents between 40 and 65 wt %. Although alkali treatment generally improved composite strength, better strength at high fiber contents for long fiber composites was achieved with untreated fiber, which appeared to be due to less fiber/fiber contact between alkali treated fibers. Composites with 65 wt % untreated, long aligned fiber were the strongest with a tensile strength (TS) of 165 MPa, Young's modulus (YM) of 17 GPa, flexural strength of 180 MPa, flexural modulus of 9 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa m1/2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Solvent‐exfoliated graphene (SEG)‐reinforced polystyrene (PS) composites were prepared using a straightforward solution‐casting method. SEG sheets, obtained by sonication‐assisted solvent direct exfoliation from natural graphite, were well dispersed in the PS matrix as evidenced from scanning electron microscopy and transmission electron microscopy observations. Addition of 0.5 wt% SEG resulted in a 6% increase in tensile strength and a 77% improvement in Young's modulus over pure PS due to the effective load transfer between SEG and PS matrix. The Young's moduli of the PS/SEG composites were obtained from both tensile experiments and calculations using the well‐established Halpin–Tsai model. Results from dynamic mechanical analysis indicated that the storage modulus of the PS/SEG composites was significantly improved relative to neat PS. The glass transition temperatures of the composites were found to increase substantially upon addition of SEG, consistent with differential scanning calorimetry analysis. © 2017 Society of Chemical Industry  相似文献   

17.
Polyethylene (PE) is one of the most produced synthetic resins in the world. Functionalized multiwalled carbon nanotube (MWCNT) is a potential nanoscale filler to realize the next generation strong and multifunctional PE composites. We demonstrate that MWCNTs grafted with short n‐alkyl groups are effective nanofillers for mechanical reinforcement of PE composites. At 1 wt% filler loading, the yield stress and Young's modulus improve significantly up to 54 and 63% compared with neat PE, respectively. Among ductile properties, tensile strength increases up to 30%; ultimate strain is preserved; and toughness increases up to 33%. More important, we show that short n‐alkyl groups can be grafted on MWCNTs much easier than long chain polymers. Further, we find that alkyl groups of C14–C18 chains have the optimum length for reinforcement. The optimum density of grafted alkyl groups is around 0.390–0.423 μmol/mg when the C14 alkyl groups are used. Overall, the results manifest that MWCNTs grafted with n‐alkyl groups with suitable length and density are efficient nanoscale fillers for high‐performance PE composites. POLYM. ENG. SCI., 54:336–344, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
This study was aimed at examining the size effect of charcoal particles on the properties of bamboo charcoal (BC)/ultra‐high molecular weight polyethylene (UHMWPE) composites. Four types of BC with various particle sizes were mixed with UHMWPE using a twin‐screw extruder. It was found that the melting temperature and crystallinity of the composites were slightly decreased with the addition of BC. The incorporation of BC remarkably improved the tensile properties and creep resistance of UHMWPE, and the particle size of BC strongly affected the properties of BC/UHMWPE composites. The BC with lowest particle size exhibited best reinforcement, where the tensile strength and Young's modulus were increased by 385% and 517% compared with neat UHMWPE. The composites with 70 wt % BC possessed conductivities of 16.8, 14.1, 13.5, and 10.9 S/m. The storage modulus and glass transition temperature of the composites also increased with the addition of BC. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45530.  相似文献   

19.
《Polymer Composites》2017,38(10):2237-2247
Cryogenic mechanical properties are important parameters for thermosetting resins used in cryogenic engineering areas. The hybrid nanocomposites were prepared by modification of a cyanate ester/epoxy/poly(ethylene oxide)‐block‐poly(propylene oxide)‐block‐poly(ethylene oxide) (PEO‐PPO‐PEO) system with clay. It is demonstrated that the cryogenic tensile strength, Young's modulus, ductility (failure strain), and fracture resistance (impact strength) are simultaneously enhanced by the addition of PEO‐PPO‐PEO and clay. The results show that the tensile strength and Young's modulus at 77 K of the hybrid nanocomposite containing 5 wt% PEO‐PPO‐PEO and 3 wt% clay were enhanced by 31.0% and 14.6%, respectively. The ductility and impact resistance at both room temperature and 77K are all improved for the hybrid composites. The fracture surfaces of the neat BCE/EP and its nanocomposites were examined using scanning electron microscopy (SEM). Finally, the dependence of the coefficients of thermal expansion (CTE) on the clay and PEO‐PPO‐PEO contents was examined by thermal dilatometer. POLYM. COMPOS., 38:2237–2247, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
This study investigates the effect of the thiol‐ene click reaction on thermal conductivity and shear strength of the epoxy composites reinforced by various silane‐functionalized hybrids of sulfhydryl‐grafted multi‐walled carbon nanotubes (SH‐MWCNTs) and vinyl‐grafted MWCNTs (CC‐MWCNTs). The results of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM) show that the sulfhydryl groups and vinyl groups are successfully grafted onto the surface of MWCNTs, after treatment of MWCNT with triethoxyvinylsilane and 3‐mercaptopropyltrimethoxysilane, respectively. Scanning electron microscopy (SEM), HotDisk thermal constant analyzer (HotDisk), optical microscope, and differential scanning calorimetry (DSC) are used to characterize the resultant composites. It is demonstrated that the hybrid of 75 wt % SH‐MWCNTs and 25 wt % CC‐MWCNTs has better dispersion and stability in epoxy matrix, and shows a stronger synergistic effect in improving the thermal conductivity of epoxy composite via the thiol‐ene click reaction with 2,2′‐azobis(2‐methylpropionitrile) as thermal initiator. Furthermore, the tensile shear strength results of MWCNT/epoxy composites and the optical microscopy photographs of shear failure section indicate that the composite with the hybrid MWCNTs has higher shear strength than that with raw MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44579.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号