首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The polypyrrole-coated multi-walled carbon nanotubes (MWCNTs) were prepared by in situ chemical oxidative polymerization of pyrrole on the surface of MWCNTs for the novel electromagnetic interference (EMI) shielding materials. The oxyfluorination treatment on MWCNTs introduced the hydrophilic functional groups resulting in well distribution and higher interfacial affinity between polypyrrole (PPy) and MWCNTs. The PPy phases formed on MWCNTs were observed by SEM. The thickness of PPy on the surface of MWCNTs decreased as increasing the hydrophilic groups on MWCNTs by the oxyfluorination treatment. The PPy-coated MWCNT composites showed the remarkable increases in permittivity, permeability, and EMI shielding efficiency (SE). The EMI SE of PPy-coated MWCNTs increased up about 28.6 dB mainly based on the absorption mechanism.  相似文献   

2.
This study presents the preparation of electrically conducting poly(ε‐caprolactone) (PCL)/multiwall carbon nanotube (MWCNT) composites with very low percolation threshold (pc). The method involves solution blending of PCL and MWCNT in the presence of commercial PCL beads. The PCL beads were added into high viscous PCL/MWCNT mixture during evaporation of solvent. Here, the used commercial PCL polymer beads act as an ‘excluded volume’ in the solution blended PCL/MWCNT region. Thus, the effective concentration of the MWCNT dramatically increases in the solution blended region and a strong interconnected continuous conductive network path of CNT−CNT is assumed throughout the matrix phase with the addition of PCL bead which plays a crucial role to improve the electromagnetic interference shielding effectiveness (EMI SE) and electrical conductivity at very low MWCNT loading. Thus, high EMI SE value (∼23.8 dB) was achieved at low MWCNT loading (1.8 wt %) in the presence of 70 wt % PCL bead and the high electrical conductivity of ∼2.49×10−2 S cm−1 was achieved at very low MWCNT loading (∼0.15 wt %) with 70 wt % PCL bead content in the composites. The electrical conductivity gradually increased with increasing the PCL bead concentration, as well as, MWCNT loading in the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42161.  相似文献   

3.
To shield undesirable electromagnetic waves caused by electronic devices and simultaneously resolve the flame safety of the electronic components, an electromagnetic interference (EMI) shielding material with excellent flame‐retardant properties is urgently needed. The synergistic effect of the intumescent flame retardant (IFR) and multiwalled carbon nanotubes (MWCNTs) for polystyrene (PS) nanocomposites prepared by melt blending was investigated. The results show that addition of certain amounts of IFRs facilitated the dispersion of MWCNTs in the PS matrix, and the percolation threshold of the MWCNTs in the PS matrix also decreased from 1.67 ± 0.05 to 1.29 ± 0.04 wt %. Moreover, the EMI shielding efficiencies (SEs) of the PS–MWCNT–IFR composites were consistently higher than those of the PS–MWCNT composites without the addition of the IFRs at the same MWCNT content; this indicated that the synergistic effect of the MWCNTs and IFRs effectively improved the EMI SE of the PS–MWCNT–IFR composites. Furthermore, the limiting oxygen index (LOI) testing results show that the LOI values of the PS–MWCNT composites were consistently higher than 27%; this indicated that the PS–MWCNT composites effectively met the needs of flame safety; this indicated that the PS–MWCNT–IFR composite is a novel and promising candidate for an ideal EMI shielding material with excellent flame‐retardant properties for today's electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45088.  相似文献   

4.
The morphological, electrical, and thermal properties of polyurethane foam (PUF)/single conductive filler composites and PUF/hybrid conductive filler composites were investigated. For the PUF/single conductive filler composites, the PUF/nickel‐coated carbon fiber (NCCF) composite showed higher electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) than did the PUF/multiwall carbon nanotube (MWCNT) and PUF/graphite composites; therefore, NCCF is the most effective filler among those tested in this study. For the PUF/hybrid conductive fillers PUF/NCCF (3.0 php)/MWCNT (3.0 php) composites, the values of electrical conductivity and EMI SE were determined to be 0.171 S/cm and 24.7 dB (decibel), respectively, which were the highest among the fillers investigated in this study. NCCF and MWCNT were the most effective primary and secondary fillers, and they had a synergistic effect on the electrical conductivity and EMI SE of the PUF/NCCF/MWCNT composites. From the results of thermal conductivity and cell size of the PUF/conductive filler composites, it is suggested that a reduction in cell size lowers the thermal conductivity of the PUF/conductive filler composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44373.  相似文献   

5.
Cotton fabrics with multiwalled carbon nanotubes (MWCNTs) dispersed by Nafion, a polyelectrolyte, and sodium dodecyl benzene sulfonate (SDBS), a surfactant, were prepared for electromagnetic interference (EMI) shielding. The fabrics were characterized by scanning electron microscopy and vector network analysis. The fabrics with the Nafion–MWCNT coating possessed a better shielding efficiency (SE) than those with the SDBS–MWCNT coating because of a more uniform dispersion of MWCNTs, which improved the electrical conductivity and EMI shielding properties. The maximum SE value of the fabric reached 11.48 dB, and the specific SE was 39.6 dB cm3/g. The reflectivity and absorptivity were calculated separately to determine the main mechanism of EMI shielding. The absorptivity was 68.6% at 12 GHz for the Nafion–MWCNT‐coated fabric; this showed that the dominant mechanism of EMI shielding for the treated fabrics was absorption. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40588.  相似文献   

6.
《Polymer Composites》2017,38(10):2146-2155
Electrically conducting fibers were prepared through in situ oxidative polymerization of pyrrole (Py) in the presence of peach palm fibers (PPF) using iron (III) chloride hexahydrate (FeCl3·6H2O) as oxidant. The polypyrrole (PPy) coated PPF displayed a PPy layer on the fibers surface, which was responsible for an electrical conductivity of (2.2 ± 0.3) × 10−1 S cm−1, similar to the neat PPy. Electrically conductive composites were prepared by dispersing various amounts of PPy‐coated PPF in a polyurethane matrix derived from castor oil. The polyurethane/PPy‐coated PPF composites (PU/PPF–PPy) exhibited an electrical conductivity higher than PU/PPy blends with similar filler content. This behavior is attributed to the higher aspect ratio of PPF–PPy when compared with PPy particles, inducing a denser conductive network formation in the PU matrix. Electromagnetic interference shielding effectiveness (EMI SE) value in the X‐band (8.2–12.4 GHz) found for PU/PPF–PPy composites containing 25 wt% of PPF–PPy were in the range −12 dB, which corresponds to 93.2% of attenuation, indicating that these composites are promising candidates for EMI shielding applications. POLYM. COMPOS., 38:2146–2155, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
This study uses the solution mixing method to combine plasticized polyvinyl alcohol (PVA) as a matrix, and multiwalled carbon nanotubes (MWCNTs) as reinforcement to form PVA/MWCNTs films. The films are then laminated and hot pressed to create PVA/MWCNTs composites. The control group of PVA/MWCNTs composites is made by incorporating the melt compounding method. Diverse properties of PVA/MWCNTs composites are then evaluated. For the experimental group, the incorporation of MWCNTs improves the glass transition temperature (Tg), crystallization temperature, Tc), and thermal stability of the composites. In addition, the test results indicate that composites containing 1.5 wt % of MWCNTs have the maximum tensile strength of 51.1 MPa, whereas composites containing 2 wt % MWCNTs have the optimal electrical conductivity of 2.4 S/cm, and electromagnetic shielding effectiveness (EMI SE) of ?31.41 dB. This study proves that the solution mixing method outperforms the melt compounding method in terms of mechanical properties, dispersion, melting and crystallization behaviors, thermal stability, and EMI SE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43474.  相似文献   

8.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

9.
This study compares electromagnetic interference (EMI) shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites, i.e., properties such as EMI shielding effectiveness (EMI SE), electrical conductivity, real permittivity and imaginary permittivity. The injection molded (MWCNT-aligned) samples showed lower EMI shielding properties than compression molded (randomly distributed MWCNT) samples that was attributed to lower probability of MWCNTs contacting each other due to MWCNT alignment. The compression molded samples showed higher electrical conductivity and lower electrical percolation threshold than the injection molded samples. The compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% showed real permittivity two times and imaginary permittivity five times greater than the injection molded samples. The EMI SE for the compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% was 15.0 and 30.0 dB, respectively, significantly greater than EMI SE for the injection molded samples. Lower EMI SE for the injection molded samples was ascribed to lower electrical conductivity, real permittivity (polarization loss) and imaginary permittivity (Ohmic loss). Comparison of the EMI shielding properties of the compression molded versus injection molded samples confirmed that EMI shielding does not require filler connectivity; however it increases with filler connectivity.  相似文献   

10.
Novel polyaniline (PANI)/flowerlike CuS composites with improved electromagnetic interference (EMI) shielding effectiveness (SE) were prepared through the in situ polymerization of PANI into the flowerlike CuS microspheres. X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible optical absorption spectroscopy, thermogravimetric analysis, electrical conductivity testing, and EMI SE testing were used to characterize the as‐obtained products. The results reveal that the flowerlike CuS was uniformly coated by a PANI shell. Most importantly, compared with the original CuS and pure PANI, the novel PANI/flowerlike CuS composites exhibited a remarkably enhanced SE. With a thickness of 3 mm, the optimal EMI SE of the PANI–CuS composites reached ?45.2 dB at 2.78 GHz, and an improved shielding efficiency below ?18 dB was also obtained over the frequency range from 300 kHz to 3 GHz. This suggested that these novel PANI/flowerlike CuS composites have promising applications in the field of shielding materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45232.  相似文献   

11.
An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σ ac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results.  相似文献   

12.
Polypyrrole (PPy) was polymerized both chemically and electrochemically in sequence on nylon 6 woven fabrics, giving rise to polypyrrole–nylon 6 composite fabrics (PPy–N) with a high electric conductivity. The stability of the composite prepared by electrochemical polymerization (ECP) on chemical oxidative polymerization (COP) fabric was better than that of the composite prepared solely by the COP process, since the AQSA dopant was able to strongly interact with the PPy main chain and had a large molecular structure. The temperature dependence of the conductivity of the composites was verified over four heating and cooling cycles. The change in conductivity over these four repeated heating and cooling cycles was affected by the interaction between the thermal stability of the dopant and the rearrangement of the PPy main chain. The electromagnetic interference shielding efficiency (EMI SE) values were in the range 5–40 dB and depended on the conductivity and the layer array sequence of the conductive fabric. The composites with a high conductivity represented reflection‐dominant EMI shielding characteristics, which are typical of the EMI shielding characteristics of metals. However, composites with low conductivity showed absorption‐dominant EMI shielding characteristics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1969–1974, 2003  相似文献   

13.
Multi-walled carbon nanotube (MWCNT)/portland cement(PC) composites have been fabricated to evaluate their electromagnetic interference (EMI) shielding effectiveness (SE). The results show that they can be used for the shielding of EMI in the microwave range. The incorporation of 15 wt.% MWCNTs in the PC matrix produces a SE more than 27 dB in X-band (8.2–12.4 GHz), and this SE is found to be dominated by absorption. Furthermore, the structural analysis, surface morphology and surface interaction of MWCNTs with PC matrix have been explored using XRD, SEM and X-ray photoelectron spectroscopy technique.  相似文献   

14.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

15.
The effect of nitric acid mild functionalized multiwalled carbon nanotubes (MWCNTs) on electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites was examined. MWCNTs were oxidized by concentrated nitric acid under reflux conditions, with different reaction times. The dispersion of MWCNTs after functionalization was improved due to the presence of oxygen functional groups on the nanotubes surface. Functionalization at 2 h exhibits the highest EMI SE and electrical conductivity of MWCNTs filled epoxy composites. However, EMI shielding performance of MWCNTs filled epoxy composite declined when the functionalization reaction time was prolonged. This was due to extensive damage on the MWCNT structure, as verified by a Raman spectroscope. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42557.  相似文献   

16.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

17.
Electrically conductive composite nanofibers of polyvinylpyrrolidone (PVP) filled with multi-walled carbon nanotubes (MWCNTs) were prepared by electrospinning process. The complex permittivity and electromagnetic interference shielding effectiveness (EMI SE) of all composite nanofibers were measured in the X band frequency range 8.2–12.4 GHz. The electrical conductivity, real and imaginary part of permittivity, and EMI shielding behaviors of the composite nanofibers were reported as function of MWCNTs concentration. Electrical conductivity of MWCNTs/PVP composite nanofiber followed power law model of percolation theory having a percolation threshold ?c = 0.72 vol% (~1 wt.%) and exponent t = 1.71. The total EMI SE of MWCNTs/PVP composite nanofibers increased up to 42 dB mainly base on the absorption mechanism. The EMI SE measured from experiments was also compared with the approximate value calculated from theoretical model. The obtained theory results confirmed that the selected model presented acceptable performance for evaluating the involved parameters and prediction of the EMI SE of composite nanofibers. The ability of the theoretical model to predict the EMI shielding by reflection and absorption was found to be a function of the frequency, thickness, permittivity, and conductivity.  相似文献   

18.
To develop a rubber composite with excellent electrical properties, a sort of synthetic rubber, acrylonitrile butadiene rubber (NBR) with CN dipoles as matrix, multi‐walled carbon nanotubes (MWCNTs) as filler, was synthesized. NBR composites reinforced with 0.5, 1.5, 3, 10, and 20 phr MWCNT contents were fabricated by latex technology. The electrical conductivity, dielectric characteristics, and electromagnetic interference (EMI) shielding effectiveness at room temperature of NBR/MWCNT composites were investigated. MWCNTs were found well dispersed into NBR matrix even for 20 phr content by FESEM observation. The electrical conductivity increased with an increment of MWCNT content. The dielectric constant was over 104 at 103 Hz frequency for 10 and 20 phr MWCNTs‐reinforced NBR composites. It was attributed to the increased electrons and interface polarization. The improved conductivity and dielectric permittivity resulted in an enhanced EMI shielding effectiveness. The EMI shielding effectiveness reached 26 dB at 16.7 GHz frequency for NBR/20 phr MWCNT composite with 1.0 mm thickness. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
A facile and economic method is developed for the fabrication of new lightweight materials with high electromagnetic interference (EMI) shielding performance, good mechanical properties and low electrical percolation threshold through melt mixing. Electrical properties, DC conductivity, EMI shielding performance and mechanical properties of poly(trimethylene terephthalate) (PTT)/multiwalled carbon nanotube (MWCNT) nanocomposites with varying filler loading of MWCNTs were investigated. High‐resolution transmission electron microscopy was used to determine the distribution of MWCNTs in the PTT matrix. The newly developed nanocomposites show excellent dielectric and EMI shielding properties. Theoretical electrical percolation threshold was achieved at 0.21 wt% loading of MWCNTs, due to the high aspect ratio and the three‐dimensional network formation of MWCNTs. Experimental DC conductivity values were compared with those of theoretical models such as the Voet, Bueche and Scarisbrick models, which showed good agreement. The PTT/3% MWCNT composite showed an EMI shielding value of ~38 dB (99.99% attenuation) with a sample thickness of 2 mm. Power balance was used to determine the actual contribution of reflection, absorption and transmission loss to the total EMI shielding value. The nanocomposites showed good tensile and impact properties and the composite with 2% MWCNTs exhibited an improvement in tensile strength of as much as 96%. © 2018 Society of Chemical Industry  相似文献   

20.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号