首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation‐crosslinked 2‐hydroxyethylmethacrylate/citric acid (HEMA/CAc), 2‐hydroxyethylmethacrylate/tartaric acid (HEMA/TA), and 2‐hydroxyethylmethacrylate/succinic acid (HEMA/Sc) copolymers were prepared by using 60Co γ‐rays. The gel fraction yield and the swelling behavior of the prepared hydrogels were studied. It was shown that increasing irradiation doses was accompanied by an increase in yield of gel fraction and a decrease in swelling degree. The parameters of equilibrium swelling, maximum swelling, initial swelling rate, swelling exponent, and diffusion coefficient of the hydrogels were determined by studying the swelling behavior of the hydrogels prepared. It was seen that the equilibrium swelling degree increases as the content of acid increases, as a result of introducing more hydrophilic groups. When the hydrophilic polymer (acids) varies in the content range of 40–80 mg, swelling exponents (n) decreases, thereby indicating a shift in the water‐transport mechanism from the anomalous (non‐Fickian)‐type to the Fickian‐type. Characterization and some selected properties of the prepared hydrogels were studied, and accordingly the possibility of its practical use in the treatment of industrial wastes such as dyes and heavy metals (Fe, Ni, Co, and Cu) were also studied. The effect of treatment time, pH of feed solution, initial feed concentration, and temperature on the dye and heavy metals uptake was determined. The uptake order for a given metal was HEMA/TA hydrogel > HEMA/CAc > HEMA/Sc hydrogel. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
In this study, N‐allylsuccinamic acid (NASA) was synthesized in a single step with a yield of 85%. Carboxylic acid containing NASA was characterized through Fourier transform infrared (FTIR) radiation and 1H‐NMR and 13C‐NMR analysis, and then it was used for synthesis of poly(2‐hydroxylethyl methacrylate‐co‐N‐allylsuccinamic acid) [p(HEMA‐co‐NASA)] hydrogels. The structure of the obtained pH‐responsive p(HEMA‐co‐NASA) hydrogels were characterized with FTIR spectroscopy and scanning electron microscopy analysis, and their swelling characterization was carried out under different drug‐release conditions. In the application step of the study, the hydrogels were used for the in vitro release of vitamin B12 and Rhodamine 6G, which were selected as model drugs. We determined that the hydrogels used as a drug‐delivery matrix could release the drug they had absorbed under different release conditions (phosphate‐buffered saline, 0.9% NaCl, and pH 1.2) at high rates for time periods of up to 24 h. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39660.  相似文献   

3.
Hydrogels have attracted considerable attention due to numerous applications, in particular as contact lenses and carriers for sustained drug delivery. The aim of the present work is to characterize the interactions of copolymer hydrogels consisted of 2‐hydroxyethylmethacrylate (HEMA) and 2‐hydroxyethylacrylate (HEA) with a small protein (lysozyme) and to assess the potential applications of these hydrogels as a drug delivery system for sustained release of protein‐based therapeutics. Physicochemical properties of protein‐loaded hydrogels, as well as lysozyme in vitro loading and release and the conformation of the protein released from hydrogels were studied. The effect of copolymer composition on the protein deposition on hydrogels and protein aggregation in the presence of hydrogels was also assessed. The results show that introduction of HEA into the copolymeric hydrogels enhances their suitability as a delivery system for proteins. Copolymerisation of HEMA and HEA allows controlling the physicochemical properties of hydrogels and the protein release rate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44768.  相似文献   

4.
Poly(hydroxyethylmethacrylate‐co‐ethylene glycol dimethacrylate) [poly(HEMA‐co‐EGDMA)]‐based hydrogel devices were synthesized by a free‐radical polymerization reaction with 2‐hydroxyethylmethacrylate as the monomer, different concentrations of ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and ammonium persulfate/N,N,N,N′‐tetra‐methyl ethylenediamine as the free‐radical initiator. The porosity of the poly(HEMA‐co‐EGDMA) hydrogels was controlled with water as the porogen. The Fourier transform infrared spectrum of poly(HEMA‐co‐EGDMA) showed absorption bands associated with ? C?O stretching at 1714 cm?1, C? O? C stretching vibrations at 1152 cm?1, and a broad band at 3500–3800 cm?1 corresponding to ? OH stretching. Atomic force microscopy studies showed that the hydrogel containing 67% water had pores in the range of 3500–9000 nm, whereas the hydrogel containing 7% water did not show measurable pores. The hydrogel synthesized with 1% EGDMA showed 50% thallium‐201 release within the first 30 min and about 80% release within 60 min. In vitro insulin‐release studies suggested that the hydrogel with 27% water showed sustained release up to 120 min, whereas the hydrogels with 47 and 67% water showed that nearly all of the insulin was released within 60 min. Hydrogel devices synthesized with 27% water and filled with insulin particles showed sustained release for up to 8 days, whereas the hydrogels synthesized with 47 and 67% water released insulin completely within 3 days of administration. Animal studies suggested that the hydrogel devices synthesized with 27% water and filled with insulin‐loaded particles (120 IU) were able to control blood glucose levels for up to 5 days after implantation. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
pH‐sensitive hydrogels for biomedical applications were synthesized using a photoinitiator‐free technique involving the initiation of photopolymerization by donor/acceptor pairs. The differential photocalorimetric technique indicated a high polymerization rate for the N‐vinylpyrrolidinone (NVP, donor)/acrylic acid (AA, acceptor) pair at a 1:1 molar ratio. However, photopolymerization of larger quantities of these monomers (1:1 molar ratio) produced a water‐soluble polymer. Nevertheless, an anionic hydrogel was successfully formed when a small quantity of 2‐hydroxyethyl methacrylate (HEMA) was included in the NVP/AA formulation. A mixture of HEMA and AA, although both are classified as acceptors, photopolymerized to produce a copolymer which functioned as an anionic hydrogel. The swelling and drug release of these hydrogels were investigated in acidic, neutral and basic pH environments. Their biocompatibility with HaCaT human epidermal keratinocyte cells was tested and a positive cell growth as evidenced by the 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyl tetrazolium bromide (MTT) cell proliferation assay indicated that these hydrogels have no toxic effect on HaCaT. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001  相似文献   

7.
The synthesis of 37 1‐(1H‐indol‐3‐yl)ethanamine derivatives, including 12 new compounds, was achieved through a series of simple and efficient chemical modifications. These indole derivatives displayed modest or no intrinsic anti‐staphylococcal activity. By contrast, several of the compounds restored, in a concentration‐dependent manner, the antibacterial activity of ciprofloxacin against Staphylococcus aureus strains that were resistant to fluoroquinolones due to overexpression of the NorA efflux pump. Structure–activity relationships studies revealed that the indolic aldonitrones halogenated at position 5 of the indole core were the most efficient inhibitors of the S. aureus NorA efflux pump. Among the compounds, (Z)‐N‐benzylidene‐2‐(tert‐butoxycarbonylamino)‐1‐(5‐iodo‐1H‐indol‐3‐yl)ethanamine oxide led to a fourfold decrease of the ciprofloxacin minimum inhibitory concentration against the SA‐1199B strain when used at a concentration of 0.5 mg L ?1. To the best of our knowledge, this activity is the highest reported to date for an indolic NorA inhibitor. In addition, a new antibacterial compound, tert‐butyl (2‐(3‐hydroxyureido)‐2‐(1H‐indol‐3‐yl)ethyl)carbamate, which is not toxic for human cells, was also found.  相似文献   

8.
Novel acrylic monomers (β‐CD‐A and β‐CD‐6‐EA) containing β‐cyclodextrin (β‐CD) with different extent of substitution were prepared by using dicyclohexylcarbodiimide (DCC) as a condensation agent at room temperature. Two kinds of functional hydrogels were also synthesized by copolymerization of β‐CD‐A and β‐CD‐6‐EA with acrylic acid (AAc) using a redox initiator system in aqueous solution. The nuclear magnetic resonance (1H NMR), infrared spectroscopy (IR), thermogravimetric analysis (TGA) were employed to character the molecular structures of β‐CD modified monomers and their copolymers. The swelling experiments indicate that the hydrogels with different equilibrium swelling ratio (ESR) possess obvious pH‐sensitivity and distinct dynamic swelling behavior. Using an anti‐cancer drug, chlorambucil (CHL), able to form complexes with β‐CD in water, as a model compound, the controlled drug release behaviors of these hydrogels were investigated. The release behavior of CHL from two kinds of hydrogels synthesized reveals that the release rate of CHL can be effectively controlled by pH values, cross‐linking density, and β‐CD content. In addition, it is found that the β‐CD with the proper frame and concentration can increase release efficiency of CHL from the hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Hydrogels, composed of poly(N‐vinyl‐2‐pyrrolidone) and crosslinked polyacrylamide, were synthesized and the release of vitamin B12 from these hydrogels was studied as a function of the degree of crosslinking and pH of the external swelling media. The three drug‐loaded hydrogel samples synthesized with different crosslinking ratios of 0.3, 0.7, and 1.2 (in mol %) follow different drug‐release mechanisms, that is, chain relaxation with zero‐order, non‐Fickian and Fickian, or diffusion‐controlled mechanisms. To establish a correlation between their swelling behavior and drug‐release mechanism, the former was studied by the weight‐gain method and, at the same time, the concentration of the drug released was studied colorimetrically. Various swelling parameters such as the swelling exponent n, gel‐characteristic constant k, penetration velocity v, and diffusion coefficient D were evaluated to reflect the quantitative aspect of the swelling behavior of these hydrogels. Finally, the drug‐release behavior of the hydrogels was explained by proposing the swelling‐dependent mechanism. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1706–1714, 2000  相似文献   

11.
The aim of the study was to prepare the controlled release dosage of carbamazepine matrix tablets using wet granulation technique. The graft copolymerization of carboxymethyl chitosan (CMCH) with 2‐hydroxyethylmethacrylate (HEMA) was carried out. The product was characterized by Fourier‐transform infrared, scanning electron microscopy, transmission electron micrograph, and X‐ray diffraction anayses. CMCH‐g‐HEMA was used as binder to prepare the matrix tablets containing carbamazepine. The properties of tablets like hardness, friability, and dissolution influenced by binder were studied. In vitro release of the matrix tablets was carried out with the phosphate‐buffered solution (pH 7.4) at 37°C and 100 × g using USP dissolution test apparatus. Release rate of carbamazepine from controlled release matrix tablets was compared with the commercially marketed tablet, Tagretol 200. Results show that after 6 hrs percentage drug release of formulated tablet CGH5 was 20.42% and that of Tegretol 200 was 18.32%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Poly(HEMA‐MAA) hydrogel particles were synthesized by redox free‐radical polymerization using 2‐hydroxyethylmethacrylate, different concentration of methacrylic acid as monomer, ethyleneglycol dimethacrylate as crosslinking agent, and APS/TEMED as free‐radical initiator. Fourier transform infrared spectrum of poly(HEMA‐MAA) hydrogels showed intense absorption peak of carbonyl group at ~ 1700 cm?1 due to carboxylic acid groups of MAA, peak at ~ 2960 cm?1 due to CH stretching and vinylic peak at 1700 cm?1 independent of MAA concentration. Highest swelling percentage 587% was observed in case of poly(HEMA‐MAA) hydrogel synthesized using 30% of MAA while lowest swelling percentage 413% was observed in hydrogel synthesized 10% of MAA at basic pH (8.0). Scanning electron micrograph of copolymeric particles showed the irregular shape of poly(HEMA‐MAA) particles with conglomeration with each due to ionization of carboxylic groups. Insulin was radiolabeled using technetium‐99m radionuclide and the radiolabeling efficiency was found to be 99%. Poly(HEMA‐MAA) hydrogel having 60% of MAA showed the highest insulin loading efficiency of 68% while lowest 37% was observed in case of 10% MAA hydrogel. Insulin release studies showed only 35–65% of insulin was released into the medium from particles at pH 2.5 in 60 min, while insulin release was significantly higher at pH 7.4. Hypoglycemic effect of the 60 and 80 I.U./kg insulin dose loaded in poly(HEMA‐MAA) copolymeric particles were carried out in fasted diabetic rats and highest decrease in blood glucose level from 506 mg/dL to 170 mg/dL was observed within first 3 h. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

13.
This article describes the synthesis and characterization of 2‐hydroxylethyl methacrylate‐coN‐vinylpyrrolidone copolymers, (HEMA‐co‐NVP), via free radical polymerization followed by grafting of poly(lactide) onto (HEMA‐co‐NVP) copolymers, via ring opening polymerization using tin octoate as a catalyst. The copolymers and the grafted copolymers (i.e., amphiphiles) were subjected to sustained release studies using salicylic acid, as a model drug. Characterization of the formed copolymers was performed using 1H‐NMR, 13C‐NMR, FTIR, TGA, DSC, and SEM techniques. Derivative of TGA thermogram was used to determine %hydrophilicity and %hydrophobicity in the grafted and ungrafted copolymers. The SEM morphology revealed porous layers with crispy structure that were most likely due to the presence of poly(lactide) chains. At lower content of poly(lactide) moiety, grafted copolymers showed non‐Fickian diffusion release rate, whereas Fickian diffusion release rate at higher content of poly(lactide) was observed. The increase of poly(lactide) content (i.e., larger %hydrophobicity) in the copolymer increased the drug‐sustainability, due to the consistent but porous amphiphilic degradable structures that allow controllable release of drug in time interval. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
In this study, pH responsive polymers composed of methacrylic acid, acrylamide, and N‐hydroxyethyl acrylamide were synthesized by free radical polymerization technique. The characterization was done with Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling and drug release behavior of the hydrogels was determined as a function of time at 37°C in pH 2.1 and 7.4. The swelling and drug release studies showed that increased methacrylic acid amount caused a higher increase in swelling and drug release values at pH 7.4 than those at pH 2.1. In addition, the drug release data were applied to kinetic models such as zero order, first order, and Higuchi equations, and it fit well in the Higuchi model of the hydrogel. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43226.  相似文献   

15.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

16.
A facile, safe, and environmentally friendly approach to the preparation of poly(β‐cyclodextrin‐co‐guanidinocitrate) (ZWβCDP) via polymerization of β‐cyclodextrin (β‐CD) in the presence of guanidinocitrate as a novel cross‐linker is reported. Novel zwitterionic guanidinocitrate cross‐linker is synthesized by in situ reaction of melted guanidine and citric acid during polymerization. The structure of achieved hydrogels is characterized by attenuated total reflection‐Fourier‐transform infrared (ATR‐FTIR), X‐ray photoelectron spectroscopy, thermogravimetric analysis, differential thermogravimetric, differential scanning calorimetry (DSC), differential of DSC, and X‐ray diffraction analyses and also by Kjeldahl and colorimetric methods for elemental analyses. The swelling ratio of the anionic β‐CD polymer (ANβCDP) and ZWβCDPs is determined in water and simulated physiological media. Subsequently, the hydrogels/ciprofloxacin (CFX, as a model antibiotic drug) complexes are prepared to improve the thermal stability of CFX and define potential pharmaceutical applications of hydrogels. Solid‐state characterization of hydrogels/CFX complexes is investigated by ATR‐FTIR and DSC. The in vitro release behavior of CFX from hydrogels is investigated at simulated physiological media, which exhibit initial burst and then slow drug release. The CFX release from ZWβCDP is slower than ANβCDP.

  相似文献   


17.
The present work proposes to fabricate a composite hydrogel material that well characterized, transparent, biocompatible, and self‐antibacterial as potential soft contact lens material. For this purpose, poly(2‐hydroxyethyl methacrylate) (PHEMA)/boric acid (BA) composite hydrogels were successfully prepared by chemical crosslinking with BA through in situ polymerization using different BA ratios between 1 and 10% w/w. Afterward, the compositions, thermal stability, transparence, oxygen permeability, water uptake capacity, swelling ratio as well as morphological and rheological properties, in vitro degradability, in vitro cytotoxicity, and antibacterial properties of the all prepared materials were analyzed using a series of different techniques. The thermal stability, hydrophilicity, water uptake, oxygen permeability gradually increased depending ratio of BA, which is desirable for biomaterial. While the transparence and refractive index decreased, the composite hydrogels, except for BA content of 10 wt %, maintained enough transparency to be used for contact lens. In addition, PHEMA/BA composite hydrogels exhibited good cytocompatibility (PHEMA‐1%BA and PHEMA‐3%BA) and excellent antibacterial activity against Gram‐positive (Staphylococcus aureus and Enterococcus faecium) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Overall, the results demonstrated that the obtained PHEMA/BA composite hydrogels could be considered as self‐antibacterial contact lens and a potential composite biomaterial for other applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46575.  相似文献   

18.
In recent years, much attention has been given to the development of specialty polymers from useful materials. In this context, amphiphilic block copolymers were prepared by atom transfer radical polymerization (ATRP) of N‐phenylmaleimide (N‐PhMI) or styrene using a poly(2‐hydroxyethylmethacrylate)‐Cl macroinitiator/CuBr/bipyridine initiating system. The macroinitiator P(HEMA)‐Cl was directly prepared in toluene by reverse ATRP using BPO/FeCl3 6 H2O/PPh3 as initiating system. The microstructure of the block copolymers were characterized using FTIR, 1H‐NMR, 13C‐NMR spectroscopic techniques and scanning electron microscopy (SEM). The thermal behavior was studied by differential scanning calorimetry (DSC), and thermogravimetry (TG). The theoretical number average molecular weight (Mn,th) was calculated from the feed capacity. The microphotographs of the film's surfaces show that the film's top surfaces were generally smooth. The TDT of the block copolymer P(HEMA)80b‐P(N‐PhMI)20 and P(HEMA)90b‐P(St)10 of about 290°C was also lower than that found for the macroi′nitiator poly(HEMA)‐Cl. The block copolymers exhibited only one Tg before thermal decomposition, which could be attributed to the low molar content of the N‐PhMI or St blocks respectively. This result also indicates that the phase behavior of the copolymers is predominately determined by the HEMA block. The curves reveal that the polymers show phase transition behavior of amorphous polymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
In order to develop a potential drug sustained delivery carrier suitable for wound healing, a series of β‐cyclodextrin conjugated hyaluronan hydrogels (β‐CD‐HA) with adjustable crosslink densities were synthesized and characterized, meanwhile the delivery kinetics and mechanism of diclofenac as a model anti‐inflammatory drug from these hydrogels were investigated. By controlling the feeding molar ratio of β‐CD/HA, a β‐CD substitution degree of 4.65% was obtained by 1H‐NMR analysis. The incorporation of β‐CD modification had little effect on the internal porous structure, water swelling ratio, and rheological property of HA hydrogel, which however were influenced by the crosslink density. Although the crosslink density had an influence on the drug loading and release profile by altering the water swelling property, the interaction between β‐CD and drug was the primary factor for the high loading capacity and long‐term sustained delivery of diclofenac. The semiempirical equation fit showed that the release of diclofenac from HA‐based hydrogels followed a pseudo‐Fickian diffusion mechanism. By the aid of β‐CD and controlled crosslink density, a β‐CD‐HA hydrogel with a diclofenac sustained delivery period of over 28 days and desirable physicochemical properties was achieved, which will be a promising drug sustained delivery carrier for wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43072.  相似文献   

20.
In this study, hydrogels based on acetylated galactoglucomannan (AcGGM)—a hemicellulose present in softwood—were synthesized and examined for their properties in drug‐release systems using two model substances of different molecular weight, size, and polarity (caffeine and vitasyn blue). Neutral hydrogels were produced from functionalized AcGGM using hydroxyethyl methacrylate (HEMA) coupled via carbonyldiimidazole (CDI) and a co‐monomer in a radical‐initiated polymerization. Through a second modification reaction between the HEMA‐modified AcGGM (M‐AcGGM‐methacrylated AcGGM) and maleic anhydride, a “double‐modified” AcGGM (CM‐AcGGM‐carboxylated M‐AcGGM) was successfully formed that could be cross‐linked to form ionic hydrogels by the very same polymerization method. The neutral hydrogels showed drug release kinetics that could be easily regulated by changing the relative amount of the methacrylated AcGGM and its corresponding degree of methacrylation. The drug release rate and the Fickian swelling decreased with an increase in these two aforementioned parameters. The ionic hydrogels showed quicker release kinetics and higher swelling capabilities than the corresponding nonionic gels did, especially at neutral conditions. Under acidic conditions, the release speed was lowered as expected because of protonation of carboxylic functionalities. Based on the findings we conclude that these novel hemicellulose‐containing hydrogels have future prospects in drug release formulations, e.g., in a later stage of development for application in oral drug administration technology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号