共查询到20条相似文献,搜索用时 31 毫秒
1.
A fracture mechanics analysis based on the J‐integral method was adopted to determine the resistance of composites with various concentrations of wood‐flour and ethylene acrylate copolymer (EAC) to crack initiation (Jin) and complete fracture (Jf). The Jin and Jf energies of unmodified poly(lactic acid) (PLA)/wood‐flour composites showed the deleterious effect of incorporating wood fibers into the plastic matrix by significantly decreasing the fracture toughness of PLA as the wood‐flour content increased. The reduced fracture toughness of the matrix induced by adding brittle wood‐flour into PLA was well recovered by impact modification of the composites with EAC. Microscopic morphological studies revealed that the major mechanisms of toughening were through the EAC existing as separate domains in the bulk matrix of the composites which tended to act as stress concentrators that initiated local yielding of the matrix around crack tips and enhanced the toughness of the composites. © 2012 Society of Chemical Industry 相似文献
2.
Relationship between the crystallization behavior of poly(ethylene glycol) and stereocomplex crystallization of poly(L‐lactic acid)/poly(D‐lactic acid) 下载免费PDF全文
Chunyan Luo Minrui Yang Wei Xiao Jingjing Yang Yan Wang Weixing Chen Xia Han 《Polymer International》2018,67(3):313-321
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry 相似文献
3.
Improved processability and performance of biomedical devices with poly(lactic acid)/poly(ethylene glycol) blends 下载免费PDF全文
Jianming Zhang Shiwei Wang Dongzhe Zhao Yankun Zhang Wenbo Pang Binbin Zhang Qian Li 《应用聚合物科学杂志》2017,134(33)
To improve the processability of micropolymer‐based devices used for biomedical applications, poly(lactic acid) (PLA) was melt‐blended with poly(ethylene glycol)s (PEGs) of different molecular weights (MWs; weight‐average MWs = 200, 800, 2000, and 4000; these PEGS are referred to as PEG200, PEG800, PEG2000, and PEG4000, respectively, in this article). The thermal properties, mechanical properties, and rheological properties of the PLA and the PLA–PEG blends were investigated. The tensile samples’ morphologies showed that the low‐MW PEGs filled molds well. The rheological properties confirmed that the low‐MW PEGs decreased the complex viscosity, and improved the processability. With decreasing PEG MW, the PLA glass‐transition temperature decreased. The nanoindenter data show that the addition of PEG decreased the modulus and hardness of PLA. The morphologies of the tensile samples showed that with increasing PEG MW, the thicknesses of the core layers increased gradually. The elongation at break was improved by approximately 247% with the addition of PEG200. Such methods can produce easily processed biological materials for producing biomedical products. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45194. 相似文献
4.
Thermal properties and non‐isothermal melt‐crystallization behavior of poly(trimethylene terephthalate) (PTT)/poly(lactic acid) (PLA) blends were investigated using differential scanning calorimetry and thermogravimetric analysis. The blends exhibit single and composition‐dependent glass transition temperature, cold crystallization temperature (Tcc) and melt crystallization peak temperature (Tmc) over the entire composition range, implying miscibility between the PLA and PTT components. The Tcc values of PTT/PLA blends increase, while the Tmc values decrease with increasing PLA content, suggesting that the cold crystallization and melt crystallization of PTT are retarded by the addition of PLA. The modified Avrami model is satisfactory in describing the non‐isothermal melt crystallization of the blends, whereas the Ozawa method is not applicable to the blends. The estimated Avrami exponent of the PTT/PLA blends ranges from 3.25 to 4.11, implying that the non‐isothermal crystallization follows a spherulitic‐like crystal growth combined with a complicated growth form. The PTT/PLA blends generally exhibit inferior crystallization rate and superior activation energy compared to pure PTT at the same cooling rate. The greater the PLA content in the PTT/PLA blends, the lower the crystallization rate and the higher the activation energy. Moreover, the introduction of PTT into PLA leads to an increase in the thermal stability behavior of the resulting PTT/PLA blends. Copyright © 2011 Society of Chemical Industry 相似文献
5.
针对聚乳酸(PLLA)亲水性差、降解周期长的问题,利用与亲水性高分子聚乙二醇(PEG)共混的方法对其进行改性。采用转矩流变仪制备了不同组成的PLLA/PEG共混物颗粒,系统研究了PLLA/PEG共混物的结晶和熔融、亲水性和在酸碱介质中的降解行为。结果表明,PEG的加入增强了共混物中PLLA的结晶能力,提高了PLLA在降温过程中的熔融结晶温度。PLLA/PEG共混物在等温结晶中表现出比纯PLLA更快的结晶速度。通过改变PLLA/PEG共混物的组成,可调控材料的表面亲水性和降解速率。随着PEG含量的增多,PLLA/PEG共混物的表面接触角降低。PLLA与PLLA/PEG共混物均可在水溶液中降解,共混物的降解速率高于纯PLLA,随着PEG含量的升高和降解液中酸碱浓度的提高,PLLA/PEG共混物的降解速率加快。 相似文献
6.
Mihir Sheth R. Ananda Kumar Vipul Dav Richard A. Gross Stephen P. McCarthy 《应用聚合物科学杂志》1997,66(8):1495-1505
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997 相似文献
7.
Jen‐Taut Yeh Chi‐Hui Tsou Chi‐Yuan Huang Kan‐Nan Chen Chin‐San Wu Wan‐Lan Chai 《应用聚合物科学杂志》2010,116(2):680-687
Differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and dynamic mechanical analysis (DMA) properties of poly(lactic acid)/ poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) specimens suggest that only small amounts of poor PLA and/or PBAT crystals are present in their corresponding melt crystallized specimens. In fact, the percentage crystallinity, peak melting temperature and onset re‐crystallization temperature values of PLA/PBAT specimens reduce gradually as their PBAT contents increase. However, the glass transition temperatures of PLA molecules found by DSC and DMA analysis reduce to the minimum value as the PBAT contents of PLAxPBATy specimens reach 2.5 wt %. Further morphological and DMA analysis of PLA/PBAT specimens reveal that PBAT molecules are miscible with PLA molecules at PBAT contents equal to or less than 2.5 wt %, since no distinguished phase‐separated PBAT droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLA/PBAT specimens, respectively. In contrast to PLA, the PBAT specimen exhibits highly deformable properties. After blending proper amounts of PBAT in PLA, the inherent brittle deformation behavior of PLA was successfully improved. Possible reasons accounting for these interesting crystallization, compatible and tensile properties of PLA/PBAT specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
8.
左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)在共混体系中可形成立构复合(sc)结晶,与聚乳酸(PLA)同质结晶材料相比,sc 结晶材料具有良好的耐热性和耐化学稳定性。因此,sc 结晶是改善PLA 综合性能的一种有效手段。但在PLLA/PDLA 共混体系中,存在各自的同质结晶与两者之间sc 结晶的竞争,所以制备高耐热sc 型PLA 材料的关键之一是理解其sc 结晶的形成条件与机理,进而调控和促进其sc 结晶程度。在PLLA/PDLA 共混物中,sc 结晶受聚合物化学结构、结晶与加工条件等诸多因素影响,其影响规律和机理较复杂。根据PLLA/PDLA共混物sc 结晶行为影响因素的不同,从聚合物分子量、立构规整性、共混比例、分子链拓扑结构、结晶方式与条件、加工助剂和其他组分加入6 个方面出发,详细综述了PLLA/PDLA 共混物sc 结晶及其sc 材料制备的研究进展,以期为高耐热生物基PLA 材料的加工制备提供指导。 相似文献
9.
Ioanna‐Georgia I Athanasoulia Maximos N Christoforidis Dimitrios M Korres Petroula A Tarantili 《Polymer International》2019,68(4):788-804
The non‐isothermal and isothermal crystallizations of extruded poly(l ‐lactic acid) (PLLA) blends with 10, 20 and 30 wt% poly(ethylene glycol) (PEG) were investigated with differential scanning calorimetry. The formation of α‐form crystals in the blend films was verified using X‐ray diffraction and an increase in crystallinity indexes using Fourier transformation infrared spectroscopy. Crystallization and melting temperatures and crystallinity of PLLA increased with decreasing cooling rate (CR) and showed higher values for the blends. Although PLLA crystallized during both cooling and heating, after incorporation of PEG and with CR = 2 °C min?1 its crystallization was completed during cooling. Increasingly distinct with CR, a small peak appeared on the lower temperature flank of the PLLA melting curve in the blends. A three‐dimensional nucleation process with increasing contribution from nuclei growth at higher CR was verified from Avrami analysis, whereas Kissinger's method showed that the diluent effect of 10 and 20 wt% PEG in PLLA decreased the effective energy barrier. During isothermal crystallization, crystallization half‐time increased with temperature (Tic) for the blends, decreased with PEG content and was lower than that of pure PLLA. In addition, the Avrami rate constants were significantly higher than those of pure PLLA, at the lower Tic. Different crystal morphologies in the PLLA phase were formed, melting in a broader and slightly higher Tm range than pure PLLA. The crystallization activation energy of PLLA decreased by 56% after the addition of 10 wt% PEG, increasing though with PEG content. Finally, PEG/PLLA blends presented improved flexibility and hydrophilicity. © 2019 Society of Chemical Industry 相似文献
10.
Yanping Liu Mengnan Zhang Hanghang Wei Zhen Wang Jun Zeng Li Qian 《Polymer International》2019,68(8):1524-1530
The mechanical properties and microstructure of poly(lactic acid) (PLA) stereocomplex spherulite at the micrometric scale were investigated using nanoindentation and synchrotron radiation scanning X‐ray microdiffraction, which exhibits a new growth habit with more and more compact lamellae. Using atomic force microscopy and laser scanning confocal microscopy, a unique sunken morphology was found. Unbalanced surface stress and volume shrinkage are proposed as the main factors for the sunken morphology, which is also contributed by a novel growth regime driven by the hydrogen bonding between two PLA enantiomers. © 2019 Society of Chemical Industry 相似文献
11.
Darwin P. R. Kint Antxon Martínez de Ilarduya A. Sansalvad Josep Ferrer Sebastin Muoz‐Guerra 《应用聚合物科学杂志》2003,90(11):3076-3086
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003 相似文献
12.
The effect of carbon dioxide (CO2) on the physical properties of poly(L ‐lactic acid) (PLLA) and on the formation of crystalline domains was investigated. The presence of CO2 in the matrix was found to induce crystallization in PLLA, with the crystallinity increasing with increasing CO2 pressure. The combination of saturation conditions and formation of crystalline domains was studied for its effect on the formation of porous morphologies in PLLA. Moreover, the effect of CO2 on PLLA properties and formation of porous structures was further exploited by first creating crystalline domains in samples using CO2 at various pressures at 25 °C and then re‐saturating the same samples with CO2 at a constant pressure of 2.8 MPa and 0 °C. This paper reports on the solubility of CO2 at 25 and 0 °C in PLLA, crystallization and subsequent effect on foam morphologies when processed using different saturation cycles. Unique and intriguing morphologies were obtained by specifically controlling the properties of PLLA. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd 相似文献
13.
聚乙二醇/聚己内酯三嵌段共聚物的合成与表征 总被引:3,自引:0,他引:3
以甲苯二异氰酸酯 (TDI)为偶联剂 ,合成了聚乙二醇 (PEG) /聚己内酯 (PCL)两亲性三嵌段共聚物 (PEG-b-PCL -b -PEG ,PECL) ,采用IR、1 H-NMR、DSC和WAXD分析和研究了PECL的结构与性能。实验结果表明 ,PECL的结构和组成与设计相一致 ,结晶度和熔点均低于均聚物 ,且随着PECL中PCL嵌段含量的增加 ,PCL嵌段熔点升高。透射电镜照片显示PECL纳米粒呈核 /壳结构的球形。 相似文献
14.
15.
In the current work, a series of biodegradable poly(ethylene terephthalate-co-ethylene succinate)s (P[ET-co-ES]s) were prepared via a traditional melting polycondensation method. First of all, the structures of prepared copolymers were characterized by nuclear magnetic resonance and Fourier transform infrared measurements. Meanwhile, the thermal properties of prepared samples were analyzed by differential scanning calorimetry and thermogravimetric analysis measurements, respectively. Subsequently, the mechanical properties of the P(ET-co-ES)s were evaluated, the tensile strength of P(ET-co-ES)s decreased with increasing of PES content in copolymer, however, corresponding P(ET-co-ES)s exhibited better elongation at break. Next, the biodegradability of P(ET-co-ES)s was evaluated using lipase as degrading enzyme. The results presented that the biodegradability of P(ET-co-ES)s improved with PES content, the corresponding results were supported by scanning electron microscopy test. Finally, the Mo's modified Avrami equation was employed to analyze the nonisothermal crystallization kinetics of prepared copolymers. The results showed the addition of the PES component improved the crystallization properties of the prepared P(ET-co-ES)s. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48422. 相似文献
16.
The miscibility and crystallization behavior of poly(ethylene oxide)/poly(vinyl alcohol) (PEO/PVA) blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and polarizing optical microscopy. Because the glass‐transition temperature of PVA was near the melting point of PEO crystalline, an uncommon DSC procedure was used to determine the glass‐transition temperature of the PVA‐rich phase. From the DSC and DMA results, two glass‐transition temperatures, which corresponded to the PEO‐rich phase and the PVA‐rich phase, were observed. It was an important criterion to indicate that a blend was immiscible. It was also found that the preparation method of samples influenced the morphology and crystallization behaviors of PEO/PVA blends. The domain size of the disperse phase (PVA‐rich) for the solution‐cast blends was much larger than that for the coprecipitated blends. The crystallinity, spherulitic morphology, and isothermal crystallization behavior of PEO in the solution‐cast blends were similar to those of the neat PEO. On the contrary, these properties in the coprecipitated blends were different from those of the neat PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1562–1568, 2004 相似文献
17.
Effects of lithium perchlorate (LiClO4) on the crystallization behaviors of poly(ethylene oxide) (PEO) were investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and polarized optical microscopy (POM) in PEO/LiClO4 system. DSC results indicate that there are nucleation effects of LiClO4 on the crystallization of PEO. But, on the other hand, the coordination of lithium ion with the oxygen ether atoms of PEO can obviously reduce the crystallinity and spherulite growth rate of PEO. This contrary effect of LiClO4 on the crystallization of PEO in PEO/LiClO4 complexes system was analyzed and discussed in detail. The Laurizen–Hoffman theory was used to describe the Li‐coordinated crystallization kinetics of PEO spherulite. It showed that the nucleation constant (Kg) and folding surface free energy (σe) decreased with increasing LiClO4 contents, and the energy necessary for the transport of segments across the liquid–solid interface (ΔE) increased on increasing the contents of LiClO4. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
18.
Jiann‐Wen Huang Ya‐Lan Wen Chiun‐Chia Kang Mou‐Yung Yeh Shaw‐Bing Wen 《应用聚合物科学杂志》2008,109(5):3070-3079
Poly(ethylene‐octene) (POE), maleic anhydride grafted poly(ethylene‐octene) (mPOE), and a mixture of POE and mPOE were added to poly(butylene terephthalate) (PBT) to prepare PBT/POE, PBT/mPOE, and PBT/mPOE/POE blends by a twin‐screw extruder. Observation by scanning electron microscopy revealed improved compatibility between PBT and POE in the presence of maleic anhydride groups. The melting behavior and isothermal crystallization kinetics of the blends were studied by wide‐angle X‐ray diffraction and differential scanning calorimeter; the kinetics data was delineated by kinetic models. The addition of POE or mPOE did not affect the melting behavior of PBT in samples quenched in water after blending in an extrude. Subsequent DSC scans of isothermally crystallized PBT and PBT blends exhibited two melting endotherms (TmI and TmII). TmI was the fusion of the crystals grown by normal primary crystallization and TmII was the melting peak of the most perfect crystals after reorganization. The dispersed second phase hindered the crystallization; on the other hand, the well dispersed phases with smaller size enhanced crystallization because of higher nucleation density. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
19.
Results are reported on the influence of composition and molecular mass of components on the isothermal growth rate of spherulites, on the overall kinetic rate constant, on the primary nucleation and on the thermal behaviour of poly(ethylene oxide)/poly(methyl methacrylate) blends. The growth rate of PEO spherulites as well as the observed equilibrium melting temperatures decrease, for a given Tc or ΔT, with the increase of PMMA content.Such observations are interpreted by assuming that the polymers are compatible in the undercooled melt, at least in the range of crystallization temperatures investigated. Thermodynamic quantities such as the surface free energy of folding σe and the Flory-Huggins parameter χ12 have been obtained by studying the dependence of the radial growth rate G and of the overall kinetic rate constant K from temperature and composition and the dependence of the equilibrium melting temperature depression ΔTm upon composition, respectively. 相似文献
20.
PEN/PET共混物结晶行为研究 总被引:1,自引:0,他引:1
用差示扫描量热法(DSC)研究了不同共混比例PEN/PET共混物的熔体结晶行为,并进行了等温结晶动力学测定。结果表明:随着两种组分向中间比例(50/50)靠近,共混物的熔融温度越低,结晶速率也越慢。 相似文献