首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental pollution by heavy metals is currently a problem of great concern for human health. In this context, this study aims to contribute with the synthesis and characterization of chitosan functionalized with three different ionic liquids (n-butylammonium acetate, sec-butylammonium acetate, and tert-butylammonium acetate) followed by its application in hexavalent chromium effluent treatment. The adsorbents synthesized (ChN, ChS, and ChT) were characterized by SEM, EDS, FTIR, BET, RDD, PSD, and XRD techniques. Afterward, the influences of temperature, contact time, and pH on the Cr(VI) adsorption process were evaluated. The solution with pH 3 displayed the highest adsorption capacities (107.31, 104.60, and 107.97 mg.g-1 for ChN, ChS, and ChT, respectively). The kinetic data were better adjusted to the Weber-Morris kinetic model with an ideal time of 2 h. Furthermore, the influence of temperature was evaluated using the Freundlich and Langmuir isotherms, with maximum capacities of 142.05 (ChN), 131.58 (ChS), and 146.63 mg.g-1 (ChT). The adsorbent displayed enhanced adsorption properties in comparison with raw chitosan by an intensification of the electrostatic interaction between amino groups and hexavalent chromium. Finally, the reusability was investigated, and significant results were observed (84.33 ± 4.87%) in the adsorption process after 4 cycles.  相似文献   

2.
A novel flocculant with the capacities of reduction and chelation was prepared in this paper. The flocculant, called polyethyleneimine–sodium xanthogenate (PEX), was synthesized by modifying polyethyleneimine with carbon disulfide and sodium hydroxide. The effect of pH on the removal of Cr(III) and Cr(VI) from aqueous solution with PEX was investigated by using flocculation experiments. The results showed that in the single-ion system (only including Cr(III) or Cr(VI) in the solution), the final Cr(III) decreased with the increase in pH from 2.0 to 10.0, while the final Cr(VI) increased at first and then decreased with the increase in this pH range studied. The removal of Cr(III) was not desirable at pH lower than 7.0, whereas the final Cr(VI) concentration reached the minimum value of 0.145 mg/L at pH 2.0. In the mixture system of Cr(III) and Cr(VI), the variation tendency for the removal of Cr(III) or Cr(VI) was very similar to that obtained in the single-ion system. The oxidation–reduction potential, zeta potential, and final pH in the supernatant were also measured to analyze the above results. Furthermore, FTIR spectra revealed that dithiocarboxylic acid groups on the macromolecular chains of PEX played a major role in the Cr(VI) reduction and Cr(III) chelation.  相似文献   

3.
Non-oxidative graphene (nOG) synthesized from natural graphite powder was modified with magnetite (Fe3O4) for removal of Cr(VI) and dyes in aqueous solution. The adsorption behavior of Cr(VI) on Fe3O4/nOG (M-nOG) was systematically investigated, and the simultaneous adsorption of Cr(VI) and dyes such as methylene blue (MB) and rhodamine B (RhB) was evaluated. Adsorption kinetic and isotherm of Cr(VI) were fitted well with pseudo-second-order model and Sips model, respectively. For the binary system, Cr(VI) removal was not affected with increasing the dye concentration, whereas the adsorption capacity of both MB and RhB was enhanced with increasing the concentrations of Cr(VI).  相似文献   

4.
Cr(VI) removal using nanoparticulated zerovalent iron is enhanced under visible light in comparison with the dark process. Using an Fe:Cr(VI) molar ratio (MR) of 1, 77% removal was obtained after two hours under irradiation, compared with 60% in dark conditions; use of MR 2 allowed almost total Cr(VI) removal. Experiments with selected filters indicated that active wavelengths are above 555 nm. The proposed mechanism involves a heterogeneous photocatalytic process promoted by the iron oxides present as an external layer of the nanoparticles acting as semiconductors after excitation with light, overcoming the passivation of the material taking place in the dark.  相似文献   

5.
Removal of Cr (VI) from aqueous solution by newspapers   总被引:1,自引:0,他引:1  
The potential to remove Cr (VI) ions from aqueous solution using newspapers was investigated in the present study. The effects of relevant parameters such as solution pH, adsorbent concentration, and reaction temperature on Cr (VI) adsorption were examined. The adsorption of Cr (VI) ions onto newspapers was found to be highly pH-dependent and the highest uptake occurred at pH 1.0. The sorption equilibrium data were correlated to the Langmuir, Freundlich, Redlich-Peterson and Dubinin-Radushkevich equations. Five different non-linear error functions were examined and the result indicated that the Freundlich and Redlich-Peterson equations better fitted the equilibrium data than Langmuir isotherm. The maximum sorption capacity was found to be 55.06 mg/g at pH 1.0, adsorbent concentration 4 g/L and reaction temperature of 30 °C. Different thermodynamic parameters viz., changes in standard free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were also evaluated and the results show that the sorption process was spontaneous and endothermic in nature. The kinetic experimental data were well fitted by the pseudo-second order, external film diffusion and diffusion models allowing the corresponding parameters to be evaluated. The sorption capacity increased with the decrease of adsorbent concentration.  相似文献   

6.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g−1 at pH 4.0 and 25 °C. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl, SO42− and PO43− reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g−1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

7.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g-1 at pH 4.0 and 25 ℃. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl-, SO42- and PO43- reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g-1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

8.
The magnetic nitrogen-doped carbon (MNC) was prepared from polypyrrole by a simple high temperature calcination process in this paper. The structure and properties of MNC were analyzed by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, Brunner-Emmet-Teller, vibrating sample magnetometer, and X-ray photoelectron spectroscopy. The capacity of MNC to adsorb Cr(VI) and Pb(II) was evaluated. The effects of the initial pH, dosage, concentration and temperature on the adsorption capacity of MNC were measured. MNC had a large specific surface area and a special porous structure. Its nitrogen and carbon sources were rich, and the ratio of carbon to nitrogen was fixed. The maximum Cr(VI)-adsorption capacity and maximum Pb(II) adsorption capacity of MNC could reach 456.63 and 507.13 mg∙g1 at 318 K, respectively. The pseudo-second-order model was used to describe the adsorption kinetics of MNC, and the Freundlich model was employed to discuss its isotherms. The adsorption process was affected by the electrostatic force, the reducing reaction, pores and chelation. The results of this study suggest that MNC is a material with superior performance, and is very easily regenerated, reused, and separated in the adsorption process.  相似文献   

9.
Amino-functionalized magnetic zirconium alginate beads with an interpenetrating network (Fe3O4/PAM/SA–Zr) were prepared, characterized, and then tested as a novel biomass adsorbent for phosphate removal and recovery. The hydrogel beads exhibited outstanding thermostability and possessed a magnetic response. The effects of the pH, dosage, initial phosphate concentration, interference ions, and temperature on the removal of phosphate were investigated. The kinetics, isotherms, and thermodynamics of the adsorption were studied. Notably, the adsorption of phosphate was endothermic, feasible, and spontaneous with a maximum uptake capacity of 42.23 mg-P/g at an optimized pH of 2.0. The phosphate could be desorbed effectively with a 0.2 mol/L NaOH solution, and the adsorbent exhibited a good reusability. The possible adsorption mechanisms were verified by zeta potential, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses. Continuous phosphate-adsorption tests were conducted in a fixed-bed columns packed with Fe3O4/PAM/SA–Zr, and the breakthrough curves were predicted by the Adams–Bohart, Thomas, and Yoon–Nelson models, respectively. The suitability of the hydrogel beads for the treatment of real wastewater was also tested. These hydrogel beads should be a promising adsorbent for phosphate removal and recovery from aqueous solutions, with the advantages of a high uptake capacity, good reusability, and easy magnetic separation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46897.  相似文献   

10.
Removal of Cr(VI) from aqueous solution by hexadecyltrimethylammonium chloride (HDTMA) modified kaolinite (HMK) was investigated, where the maximum adsorptive capacity reached 27.8 mg/g Cr(VI) using HMK compared with only 0.7 mg/g using unmodified natural kaolinite (NK). The adsorption of Cr(VI) on HMK can be well described by the Langmuir isotherm, and the kinetic adsorption of Cr(VI) on both HMK and NK fitted a pseudo-second-order model. FTIR analysis showed that surface modified HDTMA was responsible for the high adsorptive capacity of Cr(VI). HMK was used to remove Cr(VI) from an electroplating wastewater.  相似文献   

11.
The effect of initial metal concentration, contact time and solution temperature on the removal of Cr(VI) from solution by waste London plane leaves, generated by the pruning of street trees, was investigated in batch mode conditions. The removal of Cr(VI) was highly concentration‐dependent and mainly governed by physico‐chemical adsorption under the weak acidic conditions studied. The equilibrium data fit well in the Langmuir isotherm model. The Langmuir constants were calculated at different temperatures and both the adsorption capacity and adsorption intensity increased with rising temperature. The endothermic nature of the Cr(VI) adsorption was confirmed by the thermodynamic parameters. The study has shown that the waste leaves can be used as an effective adsorbent for removal of Cr(VI) from wastewater. Copyright © 2003 Society of Chemical Industry  相似文献   

12.
Poly(acrylic acid‐co‐acrylamide) hydrogels were prepared via free‐radical solution polymerization, crosslinked with ethylene‐glycol‐dimethacrylate, potassium persulfate/ammonium bisulfite as the initiator, and applied in the removal of Cu(II) ions from aqueous solutions. Molar ratios of acrylamide/acrylic acid moieties and the amount of crosslinking agent were varied to determine the swelling capacities of hydrogels and maximum metal uptake. Polymerization kinetics was investigated by 1H‐NMR. Hydrogel physicochemical properties were characterized by nitrogen sorption measurements, elemental analysis, FTIR, and X‐ray photoelectron spectroscopy (XPS). Swelling results indicated that hydrogels were swollen up to 27,500%. Hydrogels showed equilibrium Cu(II) adsorption capacities of 211.7 mg g?1 and fast kinetics (~20 min). Langmuir isotherm fitted adsorption equilibrium data. FTIR and XPS results helped in elucidating the presence of monodentate copper complex on the surface of hydrogels. A simple synthesis route of hydrogels using the redox initiator suggests the potential application in the removal of toxic metals from aqueous streams. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39933.  相似文献   

13.
The wheat straw cellulose‐based hydrogels were synthesized by graft copolymerization followed by semi‐interpenetrating network technology. The prepared hydrogels were characterized through various methods including Fourier transform infrared spectra, scanning electron microscope, thermogravimetric analysis, and X‐ray photoelectron spectroscopy. Batch adsorption experiments were carried out to investigate the adsorption performances of hydrogels toward Cu(II) ions. The results suggested that the introduction of semi‐interpenetrating network polymers, sodium alginate and poly(vinyl alcohol), could greatly enhance the adsorption property of hydrogels. And the wheat straw cellulose‐g‐poly(potassium acrylate)/sodium alginate hydrogel showed a highest Cu(II) ions adsorption capacity of 130 mg/g. The equilibrium isotherm and adsorption kinetics were also studied. Besides, the mass transfer coefficients and the thermodynamics of Cu(II) ions adsorption were also probed. Finally, the X‐ray photoelectron spectroscopy analysis further demonstrated that the Cu(II) ions adsorption was mainly via complexation reaction of ? NH2 and O‐containing groups in hydrogels. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46680.  相似文献   

14.
In this study polypyrrole (PPy) was synthesised chemically on the surface of sawdust that has already been soaked with monomer solution (pyrrole). FeCl3 were used as chemical oxidants for oxidation of pyrrole into polymer (PPy/Cl). The sawdust coated by PPy (PPy/SD) was used as an efficient sorbent for removal of Cr(VI) ion from aqueous solutions. It was found that PPy/SD is very easy and simple to prepare and can be used as an effective sorbent for removal of Cr(VI) from water and wastewater solutions. The Cr(VI) removal is assumed to be mainly due to the anion exchange properties of the polymer which is formed as PPy+/Cl. The introduced sorbent in this paper shows that PPy/SD can be used to eliminate or separate anionic contaminations from aqueous solutions under open circuit conditions.  相似文献   

15.
Natural attapulgite (ATP) was modified with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES) in order to develop an effective adsorbent for aqueous Hg(II) removal. The surface area of the modified ATP (M-ATP) was calculated using the Brunauer–Emmett–Teller method. The adsorbent was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR) and electrophoretic mobility. Due to complexation between mercury and the amine functional groups on the M-ATP, the adsorption capacities significantly increased from 5 mg/g (raw ATP) to 90 mg/g (M-ATP). Batch adsorption results showed that the adsorption process was rapid and over 90% of aqueous Hg(II) was removed within 1 h. The efficiency of the adsorbent was found to remain almost constant over a wide pH range (3–11). Adsorption of Hg(II) by M-ATP was proposed as the complexation between mercury and the amine functional groups on the M-ATP surface. Ionic strength and co-existing ions had a slight influence on the adsorption capacity. Hg(II) adsorbed onto M-ATP could be effectively desorbed in 1:1 (m/m) chlorohydric acid/thiourea solution. Our results suggest that the M-ATP may be used as renewable adsorbents for fast removal of Hg(II) from aqueous solutions.  相似文献   

16.
Chitosan was grafted on the surface of a cotton gauze (20, 50, and 100 mg chitosan g−1 cotton) to improve its stability in aqueous solutions. The adsorption of hexavalent chromium ions from water on the grafted chitosan was evaluated to determine, by means of linear and nonlinear models, the kinetic and isotherm adsorption of the process. The kinetics of pseudo second-order, pseudo first-order, and adsorption isotherms type II were obtained, that is, a monolayer adsorption on nonporous adsorbents with physical adsorption was present. The most probable energy of adsorption corresponded to a physisorption with hydrogen bond interactions between chromium ions and ammonium groups. Moreover, three different cross-sectional areas of hexavalent chromium ions were calculated and used to estimate the specific surface area employed by active sites to adsorb metal ions in terms of chitosan or cotton mass. Finally, the percentage of the area occupied by chromium ions on the surface was estimated by dividing the resulting specific surface area in terms of cotton mass by the specific surface area of cotton reported in literature. As a result, it was determined that the occupied area is between 6% (for 20 mg chitosan g−1 cotton)-24% (for 100 mg chitosan g−1 cotton) from the total area of cotton.  相似文献   

17.
Chromate sorption on pyridine strong base anion exchangers with different functional groups (methyl, ethyl, and butyl groups), at the quaternary nitrogen atoms, was studied as a function of various initial concentrations (100–1500 mg Cr/L) and counterion type. The studied resins in the Cl?[ form have higher Cr(VI)‐retention capacities than those in the SO form. The pyridine strong base anion exchangers showed a selectivity reversal for the sulfate and chromate anions compared to that of the commercial resins. The alkyl substituent length of the quaternary nitrogen atoms exerted a substantial influence on the Cr(VI)‐retention capacity values for the resins in the Cl? form; the chromate anions preferred resins with methyl functional groups, that is, resins with a greater hydrophilic structure. For the resins in the SO form the length of the substituent at the quaternary nitrogen atom had only a negligible influence on their Cr(VI)‐retention values. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1957–1963, 2004  相似文献   

18.
Glycidyl methacrylate–based resin crosslinked beads with acetamide functions were demonstrated to be efficient in the removal of mercury. Beaded polymer supports were prepared by suspension polymerization of glycidyl methacrylate (0.9 mol) and ethylene glycol dimethacrylate (0.1 mol). The resulting copolymer beads were modified through epoxy functions in two steps: (1) by treatment with excess dibutyl amine and (2) by subsequent reaction with chloroacetamide. The resulting polymer resin, which had a chloroacetamide content of 2.5 mmol/g, was effective in extracting mercury from aqueous solutions. The mercury sorption capacity was around 2.2 mmol/g in nonbuffered conditions. Experiments performed in identical conditions with several metal ions revealed that Cd(II), Pb(II), Zn(II), and Fe(III) ions also were extractable in low quantities (0.2–0.8 mmol/g). The sorbed mercury could be eluted by repeated treatment with hot acetic acid without hydrolysis of the amide groups. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 348–352, 2006  相似文献   

19.
Graft copolymerization of acrylic acid (AA) onto starch was carried out with ceric ammonium nitrate as initiator under nitrogen atmosphere. The grafting percentages (GP%) of starch‐graft‐acrylic acid (St‐g‐AA) copolymers were determined. The effect of GP% of St‐g‐AA copolymers on the competitive removal of Co2+, Ni2+, Zn2+ ions from aqueous solution was investigated at different pH (2, 4, 6). The concentrations of each ion in aqueous solution 5 mmol/L. Effects of various parameters such as treatment time, initial pH of the solution and grafting percentage of starch graft copolymers were investigated. Metal ion removal capacities of St‐g‐AA copolymers increased with GP% of the copolymers and pH. The results show that the removal of metal ions followed as given in the order Co2+ > Ni2+ > Zn2+. In this study, metal ion removal capacities were determined by atomic absorption spectrophotometer (AAS). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
Resin was modified with ferrocene (Fc) to enhance removal of Methylene Blue (MB) and Cu2+ from simulated wastewater. The FTIR, N2‐BET, and X‐ray fluorescence analysis confirmed that Fc was successfully grafted onto the surface of resin. The adsorption capacity of Fc modified cation exchange resin (FMCER) was calculated to be 392.16 mg/g Cu2+ and 10.01 mg/g MB. Both processes were spontaneous and exothermic, best described by Langmuir equation. Pseudo‐first‐order kinetic model satisfied the adsorption of MB, while the intraparticle‐diffusion model fitted the kinetics of Cu2+ adsorption best. The result revealed a multilayer adsorption of Cu2+ on FMCER, and the kinetics maybe controlled by intraparticle diffusion, film diffusion, and competition force. The adsorption of MB and Cu2+ on FMCER were physicosorptive, with activation energies of 2.09 and 1.27 kJ/mol. pH 2–7 and 4–5 are optimum for the removal of MB and Cu2+, and pH 4 is optimal for the simultaneous removal of MB and Cu2+. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41029.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号