首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
基于ANSYS的功率VDMOS器件的热分析及优化设计   总被引:1,自引:0,他引:1  
针对TO-220 AB封装形式的功率VDMOS器件,运用有限元法建立器件的三维模型,对功率耗散条件下器件的温度场进行热学模拟和分析,研究了基板厚度、粘结层材料及粘结层厚度对器件温度分布的影响.分析结果表明,由芯片至基板的热通路是器件的主要散热途径.基板最佳厚度介于1~1.2 mm之间,且枯结层的导热系数越大、厚度越薄,越有利于器件的散热.  相似文献   

2.
热路、热阻和散热板设计   总被引:1,自引:0,他引:1  
<正> 在制作功率放大器、稳压电源等大电流设备之前,不仅要对这些设备进行电路设计,还必须进行散热设计。散热设计不当,不是烧毁价格较高的功率管或功率型集成电路,就是散热板太大,耗材、占空间,或功率器件的余量过大,造成设备资源浪费。要学会散热设计,首先要了解热路和热阻等基本概念。 1.热路 热路即热传导通过的路径。 半导体器件的热量产生在PN结上,通过器件内部结构传到外壳,再散发到周围空气中。由于器件外壳不可能太大,与空气接触面积不够,所以,大功率器件都要采用散热板扩大其外壳与空气的接触面积,加快散热过程。因此,普通半导体管的热路为PN结→管壳→空气,功率型器件的热路则为PN结→管壳→散热板→空气。  相似文献   

3.
当前,散热问题已成为影响LED寿命、光效、光衰和色温等技术参数的重要因素。文章在综合分析散热技术和LED封装对散热性能影响的基础上,利用COB(板上芯片)封装技术,将LED芯片直接封装在铝基板上,研制成了一种基于COB封装技术的LED。与SMD封装LED进行比较,分析了其散热性能。分析结果表明:基于COB封装技术的LED减少了LED器件的结构热阻和接触热阻,使其具有良好的散热性能。  相似文献   

4.
散热是大功率LED封装的关键技术之一,散热不良将严重影响LED器件的出光效率、亮度和可靠性。影响LED器件散热的因素很多,包括芯片结构、封装材料(热界面材料和散热基板)、封装结构与工艺等。文章具体分析了影响大功率LED热阻的各个因素,指出LED散热是一个系统概念,需要综合考虑各个环节的热阻,单纯降低某一热阻无法有效解决LED的散热难题。文中还对国内外降低LED热阻的最新技术进行了介绍。  相似文献   

5.
基于热电分离式设计理念,开发出FR4/Cu与FR4/AlN两种高导热散热基板,并利用SMT工艺将13W的Osram S2W型LED灯珠分别与上述两种散热基板焊接后组装成LED模组,利用半导体制冷温控台恒定散热基板底部温度后,使用结温测试仪对LED的结温进行了测试,同时借助直流电源和积分球分别对LED的总功率和光功率进行了测量后得到了模组的热功率值。最后根据LED结温测试结果与热功率值计算得出了模组的热阻值,并在此基础上对两种基板的散热性能进行了对比研究。结果表明,FR4/AlN基板的散热性能较之FR4/Cu基板稍逊,当使用FR4/Cu基板散热时,LED的结温和热阻分别是49.72 ℃ 、2.21℃ /W,当使用FR4/AlN基板散热时LED的结温和热阻分别是51.32 ℃、2.32℃/W。  相似文献   

6.
激光二极管合束模块整体散热热阻分析   总被引:1,自引:0,他引:1  
半导体激光器散热是在热源至热沉之间尽可能提供一条低的热阻通路。其主要目的是降低外热阻(即激光器芯片至散热空间的热阻),使发热激光器芯片与被冷却表面之间保持一个低的温度梯度和良好的热接触。对于接触热阻冷却方法,人们往往根据自身的研究对象,用实验方法来解决接触热阻的问题。通过对单管合束模块整体热阻逐步进行分析,通过软件模拟和结合频率红移法对激光二极管热阻进行测量,得出单管合束模块整体散热热阻小于0.25 ℃/W。此散热模块可以满足百瓦级半导体激光器的散热要求。  相似文献   

7.
为探究半导体分立器件电学法热阻测试时器件结温与热阻的变化规律,开展了基于热阻测试实验分析。详细介绍了热阻测试程序和典型热阻测试电路,并对4款典型VDMOS器件开展热阻测试,结合器件结构特性、热响应曲线和微观导热理论中声子导热系数与温度关系,研究获得器件热阻与结温的变化规律。通过热阻与结温的正相关性规律,有效提升器件在老炼和实际工况下结温计算的准确性。  相似文献   

8.
SiC器件相比于Si器件,具有更高的功率密度,表现出高的器件结温和热阻。为了提高SiC功率模块的散热能力,提出了一种基于石墨嵌入式叠层DBC的SiC功率模块封装结构,并建立封装体模型。通过ANSYS有限元软件,对石墨层厚度、铜层厚度和导热铜柱直径进行分析,研究各因素对散热性能的影响,并对封装结构进行优化以获得更好的热性能。仿真结果表明,石墨嵌入式封装结构结温为61.675℃,与传统单层DBC封装相比,结温降低19.32%,热阻降低27.05%。各影响因素中石墨层厚度对封装结温和热阻影响最大,其次是铜柱直径和铜层厚度。进一步优化后,结温降低了2.1%,热阻降低了3.4%。此封装结构实现了优异的散热性能,为高导热石墨在功率模块热管理中的应用提供参考。  相似文献   

9.
借鉴热电分离式设计理念,利用图形转移和蚀刻技术将铜合金板材加工成带有导热柱的底座,然后通过压合工艺将金属底座与FR4复合制备成热电分离式金属基板。利用冷热冲击试验箱对基板进行了热冲击试验,并借助SEM对历经1 000个高低温突变冷热循环后的铜基材与FR4界面形貌进行了观察与研究。利用结温测试仪、功率计、积分球系统、半导体制冷温控台等仪器和设备,通过结温及热阻测试对比研究了普通铜基板与热电分离式铜基板在铜基、绝缘层及线路层厚度相同的情况下,对大功率LED模组散热效果的影响。结果表明,基板在经低温-55℃、高温125℃、1 000次冷热循环后,铜基材与FR4界面处既无裂纹萌生,也无气泡产生,FR4与铜基材结合完好。对于驱动功率为13W的LED灯珠,在模组辐射功率与热功率大致相同的情况下,热电分离式铜基板与普通铜基板所对应的芯片结温分别为49.72和73.14℃,所对应模组的热阻则分别为2.21和4.37℃/W,这意味着热电分离式铜基板较之普通铜基板在大功率LED散热管理方面更具优势。  相似文献   

10.
热界面材料对高功率LED热阻的影响   总被引:2,自引:2,他引:0  
散热不良是制约大功率LED发展的主要瓶颈之一, 直接影响着大高功率LED器件的寿 命、出光效率和可靠性等。本文采用T3ster热阻测试仪和 ANSYS热学模拟的方法对LED器件进行热学分析,以三种热界面材料(金锡,锡膏,银胶)对LE D热阻及芯片结温的影响为例,分析了热界面材料的热导率、厚度对LED器件热学性能的影响 ,实验结果表明界面热阻在LED器件总热阻中所占比重较大,是影响LED结温高低的主要因素 之一;热学模拟结果表明,界面材料的热导率、厚度及界面材料的有效接触率均会影响到LE D器件结温的变化,所以在LED器件界面互连的设计中,需要综合考虑以上三个关键参数的控 制,以实现散热性能最佳化。  相似文献   

11.
LED结温、热阻构成及其影响   总被引:2,自引:0,他引:2  
LEDPN结温上升会引起LED光学、电学和热学性能的变化,甚至过高的结温还会导致封装材料(例如环氧树脂)、荧光粉物理性能变坏,LED发光衰变直至失效,因此分析LED结温、热阻构成,如何降低PN结温升,是应用LED的重要关键所在。  相似文献   

12.
通过对不同驱动电流下各种颜色LED结温和热阻测量,发现各种颜色LED的热阻值均随驱动电流的增加而变大,其中基于InGaN材料的蓝光和白光LED工作在小于额定电流下时,热阻上升迅速;驱动电流大于额定电流时,热阻上升速率变缓。其他颜色LED热阻随驱动电流变化速率基本不变。结温也随驱动电流的增加而变大。相同驱动电流下,基于AlGaInP材料的1W红色、橙色LED的结温要低于基于InGaN材料的蓝色、绿色、白色LED的结温。分别用正向电压法和红外热像仪法测量了实验室自制的1 mm×1 mm蓝光芯片结温,比较了两种方法的优缺点。结果表明,电学法测量简单快捷,测量结果可以满足要求。  相似文献   

13.
基于倒装焊芯片的功率型LED热特性分析   总被引:1,自引:0,他引:1  
罗元  魏体伟  王兴龙 《半导体光电》2012,33(3):321-324,328
对LED的导散热理论进行了研究,推导出了倒装焊LED芯片结温与封装材料热传导系数之间的关系。通过分析倒装焊LED的焊球材料、衬底粘结材料和芯片内部热沉材料对芯片结温的影响,表明衬底粘结材料对LED的结温影响最大,并且封装材料热传导系数的变化率与封装结构的传热厚度成反比,与传热面积成正比。该研究为倒装焊LED封装结构和材料的设计提供了理论支持。  相似文献   

14.
鲁祥友  荣波 《半导体光电》2016,37(3):392-395
为解决大功率LED的散热问题,提出一种应用于大功率LED散热的微型回路热管,研究了充液率和倾斜角度对热管冷却大功率LED的启动性能、结温和热阻等特性的影响.研究结果表明:热管的最佳充液率为60%,系统的总热阻为7.5 K/W,此时对应的热管的热阻为1.6 K/W;热管的启动时间约为6.5 min,LED的结点温度被控制在42℃以下,很好地满足了大功率LED的结温稳定性要求.  相似文献   

15.
High-power Light Emitting Diode (LED) technology has developed rapidly in recent years from illumination to display applications. However, the rate of heat generation increases with the LED illumination intensity. The LED chip temperature has an inverse proportion with the LED lifetime. High-power LED arrays with good thermal management can have improved lifetime. Therefore, for better optical quality and longer LED lifetime it is important to solve the LED thermal problems of all components. In particular, Metal Core Printed Circuit Board (MCPCB) substrate heat sink design and thermal interface materials are key issues for thermal management. This paper presents an integrated multi-fin heat sink design with a fan on MCPCB substrate for a high-power LED array using the finite element method (FEM). The multi-fin heat sink design and simulation results provide useful information for LED heat dissipation and chip temperature estimation.  相似文献   

16.
Avalanche transit time oscillators are operating at power densities approaching 106W/cm2, unprecedented in semiconductor device history. At such power densities, heat flow resistance problems at the interface between the flip-chip mounted silicon chips and the metal substrate, as well as between the package and the heat sink, are extremely critical. This paper describes a new, nondestructive and accurate method of measuring the heat flow resistance between junction and heat sink by utilizing the temperature dependent breakdown voltage Vb(T) as a conveniently built-in temperature sensor. Variations in junction temperature ΔT with power ΔP= VbΔI are, therefore, related to variations in breakdown voltage ΔVbwith current ΔI resulting in a contribution to the electrical small signal resistance of the diode. This thermal resistance contribution Rthcan be separated readily from spreading and space charge resistance Rapand Rscbecause of the frequency dependence of Rth(ω). Furthermore, the frequency dependence of Rth(ω) allows the separation of heat flow resistance contributions originating in the immediate vicinity of the junction (Si-metal interface) from contributions originating at a poor thermal contact between package and heat sink. In keeping with calculations on simplified geometrical configurations, for which analytical solutions of the frequency dependent heat flow in a distributed circuit could be obtained, experimental results are presented which indicate that both heat flow resistance contributions can be extracted and separated with sufficient accuracy from as few as three electrical resistance measurements, e.g., at dc, 100 Hz, and 1 MHz. The simplicity of such measurements and their evaluation make this technique ideal for in-line testing of production devices.  相似文献   

17.
This paper designs a 3×3 light emitting diode(LED) array with a total power of 9 W,presents a thermal analysis of plate fin,in-line and staggered pin fin heat sinks for a high power LED lighting system,and develops a 3D one-fourth finite element(FE) model to predict the system temperature distribution.Three kinds of heat sinks are compared under the same conditions.It is found that LED chip junction temperature is 48.978℃when the fins of heat sink are aligned alternately.  相似文献   

18.
基于脉冲式U-I 特性的高功率型LED 热学特性测试   总被引:1,自引:0,他引:1       下载免费PDF全文
热学特性是影响功率型LED光学和电学特性的主要因素之一,设计了一套基于脉冲式U-I特性的功率型LED热学特性测试系统,可以测试在不同结温下LED工作电流与正向电压的关系,从而获得LED的热学特性参数。该系统通过产生窄脉冲电流来驱动LED,对其峰值时的电压电流进行采样,同时控制和采集LED的热沉温度,从而获得不同温度下LED的U-I特性曲线。与其他U-I测试系统相比,文中采用了窄脉冲(1 s)工作电流,LED器件PN结区处于发热与散热的交替过程,不会造成大的热积累,大大提高了测量精度。实验中,对某功率型LED进行了测试,获得了该器件的电压、电流和结温特性曲线,并利用B样条建立该器件的U-I-T模型,进而实现了对其结温的实时在线检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号