首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为达到采用微波诱导氧化工艺(MIOP)处理北系染料废水的目的,分别考察了活性炭种类、活性炭用量、微波辐射时间、微波功率、H2O2用量和pH值等因素对处理效果的影响.结果表明,6 g活性炭与50 mL北系废水混合,在微波功率为480?W,辐射时间6 min,H2O2用量2.0 mL,FeSO4用量0.07 g,pH=3的条件下,对废水COD的去除率达到98.95%.微波诱导氧化、活性炭吸附和单独微波辐射3种不同工艺的对比实验表明,微波诱导氧化有明显的优越性,且不会对环境造成二次污染.动力学研究表明,该氧化过程符合一级动力学规律,反应速率常数K=0.086 min-1,反应半衰期t1/2=8.06 min.  相似文献   

2.
研究了玉米芯对活性艳红K-2BP染料的吸附性能及吸附动力学.探讨了溶液的初始质量浓度、pH值、时间和温度对吸附性能的影响.研究了吸附规律及动力学,结果显示:其吸附行为满足Langmuir等温式,反应级数为3级,反应速率常数k=1.7783(mol/L)-2.h-1和反应活化能Ea=34.1801 kJ/mol。  相似文献   

3.
用改性茶叶与Fe3+反应,制得吸附材料茶叶质铁,用此吸附剂吸附水溶液中的活性艳红K-2BP染料和活性嫩黄K-6G染料,对吸附pH值、温度和时间等工艺条件和吸附动力学进行了研究.结果表明:茶叶质铁对2种染料的吸附最佳pH值都小于1,平衡吸附量随着温度的升高先增大后减小,茶叶质铁对结构式中含酚羟基的活性艳红K-2BP染料饱和吸附量大;动力学吸附速率方程表明茶叶质铁对2种染料的吸附反应符合一级反应.  相似文献   

4.
微波诱导氧化处理直接蓝染料废水的研究   总被引:2,自引:0,他引:2  
采用微波诱导氧化工艺(MIOP)处理直接蓝染料废水,用实验方法分别考察了活性炭种类、活性炭用量、微波辐射时间、微波功率、H2O2用量和pH值等因素对处理效果的影响.结果表明,5 g活性炭与50 mL直接蓝废水混合(固液比为1∶10),在微波功率为480 W,辐射时间6 min,H2O2用量2.0 mL,pH=3的条件下,对废水COD的去除率达到97.4%.动力学研究表明,该氧化过程符合一级动力学规律,反应速率常数K=0.088 min-1,反应半衰期t1/2=7.88 min.MIOP有望在废水处理中得到广泛应用.  相似文献   

5.
以硅藻土为载体,Fe2O3为催化剂,H2O2为氧化剂,在功率为380 W的微波辐照下,催化剂产生激发电子诱导H2O2产生大量的羟基自由基,对水化污泥进行催化氧化处理,使得其中的酚类有机物被迅速氧化分解,去除率达90%以上.而无微波辐照的情况,对酚类物质的降解率低于10%.同时,从表观动力学的角度对微波诱导和催化氧化两个阶段的反应速率进行了分析阐述,表明催化氧化阶段的反应速率高于前期微波诱导阶段的反应速率,即在微波诱导后,氧化反应速率迅速提高.  相似文献   

6.
分别采用Fenton法和微波法对吸附活性艳红的活性炭进行再生,研究了H2O2加入量、n(H2O2)︰n(Fe2+)、pH、反应时间、温度、微波功率以及微波辐照时间对再生效果的影响。实验结果表明:在n(H2O2)︰n(Fe2+)=40︰1,H2O2加入量为2mL,pH为4,反应时间为60min时,Fenton再生效率达78.16%;在微波功率为700 W,微波辐照时间为2min时,微波再生效率达56.10%。原炭、Fenton再生炭和微波再生炭的吸附等温线符合Langmuir吸附等温模型。  相似文献   

7.
以硅藻土为载体,Fe2O3为催化剂,H2O2为氧化剂,在功率为380 W的微波辐照下,催化剂产生激发电子诱导H2O2产生大量的羟基自由基,对水化污泥进行催化氧化处理,使得其中的酚类有机物被迅速氧化分解,去除率达90%以上,而无微波辐照的情况,对酚类物质的降解率低于10%,同时,从表观动力学的角度对微波诱导和催化氧化两个阶段的反应速率进行了分析阐述,表明催化氧化阶段的反应速率高于前期微波诱导阶段的反应速率,即在微波诱导后,氧化反应速率迅速提高。  相似文献   

8.
以Fe3O4/SiO2复合微球为基体,采用溶胶—凝胶法制备了Bi掺杂的磁性TiO2复合光催化剂,并用SEM、FT—IR和VSM等测试手段对催化剂进行了表征。以活性艳红K-2BP为目标降解物评价其光催化活性。结果表明,制备的复合光催化剂易于磁性固液分离,K-2BP溶液初始浓度为20 mg/L,pH值为2,光催化剂的添加量为0.5 g/L,Bi摩尔分数为0.6%的光催化剂时的催化活性最高,光催化反应5 h后K-2BP的降解率达到88.38%。  相似文献   

9.
采用原位共沉淀法制备了氧化石墨/壳聚糖磁性复合吸附剂,研究了氧化石墨/壳聚糖磁性复合吸附剂对活性艳红的吸附行为,发现壳聚糖与氧化石墨的加入量为重量比在200:1时对活性艳红的吸附量最大.考察了氧化石墨/壳聚糖磁性复合吸附剂在不同pH值、不同时间下对活性艳红的吸附性能.实验结果表明,该吸附剂吸附活性艳红的最佳pH值为2,饱和吸附量为706mg/g,吸附速度快,对活性艳红的吸附在30min内达吸附平衡.吸附过程可用Langmuir吸附等温线描述,符合二级动力学方程.经10次吸附后,对活性艳红仍保留了初次吸附量的61%,具有一定的重复使用性.  相似文献   

10.
以椰壳粉末活性炭(PAC)为载体,钛酸丁酯和乙醇为原料,采用溶胶凝胶浸渍法制备负载型光催化剂(TiO2/AC),并研究其降解模拟废水中微量污染物卡马西平的效果。结果表明:TiO2/AC对卡马西平的处理效果明显优于粉末二氧化钛(TiO2)和活性炭,TiO2/AC对卡马西平的去除率是TiO2的1.7倍。当卡马西平初始浓度为10mg/L时,TiO2/AC的投加量为500mg/L、TiO2的负载量为11.2%、反应pH值为7时,卡马西平去除率达到90.6%。TiO2/AC对不同初始浓度卡马西平溶液的降解过程符合准二级反应动力学,二级反应常数与浓度成反比。利用Langmuir-Hinshelwood(L-H)模型可得出表观吸附平衡常数Ka=9.215×10^3 L/mol,表面反应速率常数Kr=3.678×10^-6 mol/(L·min),微波辐照是实现催化剂再生的最佳方法。  相似文献   

11.
研究微波强化臭氧(MW/O3)系统下主要影响因素如臭氧投量、微波功率、pH值及温度等对苯酚降解效果和动力学的影响.结果表明:在单独的微波辐射下苯酚去除率很小,在复合氧化过程MW/O3工艺中有显著的提高,表明微波对臭氧氧化存在明显的强化作用;在单独微波辐照或者臭氧氧化工艺和MW/O3强化氧化系统中苯酚的降解均符合拟一级动力学关系,其中MW/O3氧化系统苯酚去除的速率常数增强因子可以达到3.6,降解机理类似臭氧氧化苯酚的降解过程,羟基自由基氧化机制为主.通过实验推导出简化的与pH值、臭氧投量、微波功率和反应温度等因素相关的苯酚降解动力学模型.  相似文献   

12.
微波辐射Fenton氧化处理络合铜废水研究   总被引:2,自引:0,他引:2  
以络合铜生产废水为研究对象,考察了H2O2投加量、FeSO4投加量、pH值、微波辐射时间、微波辐射功率等因素对微波辐射Fenton氧化法去除污染物效果的影响.分析了最优条件下单独微波、单独Fenton以及两者联用对CODCr和Cu2+的去除作用,初步探索了各影响因子的作用效果和综合反应机理.结果表明,通过单因素实验优化微波辐射Fenton氧化处理络合铜生产废水的最佳工艺条件为:30%H2O2用量为130 mL/L、FeSO4.7H2O用量为5 g/L、pH值为3.5、微波功率680 W、微波辐射时间10 min.在此条件下,微波结合Fenton氧化使CODCr和Cu2+分别由14 750 mg/L、968 mg/L下降到1 327 mg/L、55 mg/L,单独微波下降到11 563 mg/L、681 mg/L,单独Fenton氧化下降到2 537 mg/L、99 mg/L.  相似文献   

13.
微波诱导催化氧化法降解溴氨酸水溶液影响因素研究   总被引:1,自引:0,他引:1  
采用微波诱导催化氧化工艺对溴氨酸水溶液的降解进行了初步研究,考察了H2O2投加量、溴氨酸水溶液初始浓度、催化剂投加量、微波辐照功率及微波辐照时间等因素对溴氨酸降解效果的影响.实验结果表明:加入9 g改性氧化铝催化剂于100 mL浓度为400 mg/L溴氨酸水溶液中,在微波功率为640 W,辐照时间为1 min,H2O2用量为4 mL的条件下,溴氨酸水溶液的脱色率达92.3%,CODCr去除率达87.7%.  相似文献   

14.
研究了微波辐照下镍磁黄铁矿空气氧化动力学。结果表明,氧化过程中,物相的转变,物质固有特性对微波的吸收性和化学反应热等因素的影响,致使脱硫反应系非线性升温过程,反应前期和后期分别为化学控制和扩散控制。  相似文献   

15.
采用TiO2光催化氧化处理低浓度富马酸废水。在单因素实验基础上,通过响应面分析法中Box-Behnken进行实验设计,以废水初始浓度、pH值、催化剂投入量及光照时间作为变量,以废水的降解率作为响应量,研究不同变量对富马酸废水降解效率的影响及其交互作用。实验结果表明,该处理方法对富马酸废水具有很好的降解效率,光催化降解富马酸过程符合一级降解动力学过程;二次多项式的拟合优化结果表明,光照时间和废水pH值的交互作用显著。优化出的降解低浓度富马酸的最佳工艺条件是:废水初始浓度为68.76 mg/L时,催化剂投加量为0.06 g,pH值为5.01,反应时间为48.67 min,在该操作条件下降解效率可以达到97.41%。  相似文献   

16.
采用能谱分析(EDS),荧光光谱分析(XRF),透射电子显微镜(TEM)测试的手段结合水化学理论研究了垃圾焚烧(MSWI)飞灰去除废水中高浓度磷酸盐的动力学。结果表明:MSWI飞灰除磷速率较快,303K下30min磷去除率95%;除磷过程宏观表现为吸热过程,但对外加能量要求较低;除磷反应对MSWI飞灰中的重金属有很好的稳定化效果,反应后溶液中重金属未检出。化学沉淀是MSWI飞灰除磷的主要机制,Ca、Fe、Zn等均可为反应提供阳离子。反应物PO。”与可溶性产物的内扩散过程是飞灰除磷的控制步骤,宏观动力学过程适用于球体内扩散控制模型,磷酸盐反应率与时间的关系可描述为1—3(1-x)^2/3+2X—kt,实验得到表观活化能约10.06kJ/mol。  相似文献   

17.
三相流化床中微波诱导氧化处理含酚废水研究   总被引:10,自引:0,他引:10  
针对目前微波诱导氧化工艺不能连续运行的问题,研究开发了采用三相流化床反应器的微波诱导氧化处理含酚废水的设备和工艺,实现了微波诱导催化氧化工艺的连续运行.以活性炭为催化剂,考查了各种实验条件对该工艺处理效果的影响,获得了最佳的工艺操作条件:以25g粒径<0.9mm的颗粒活性炭为催化剂,进水流量为2 5L/h,进水pH在酸性或中性,苯酚质量浓度在100mg/L左右,曝气量为3 74L/h,微波功率为150W.  相似文献   

18.
采用氨水调节的微波多元醇法合成了Pd/C和Pd2Pt/C催化剂,并使用透射电镜(TEM)和X-射线衍射(XRD)对催化剂的微观结构和形貌进行了表征.结果显示,在微波合成的电催化剂中Pd和Pd2Pt纳米粒子具有均匀的粒径,并高度分散在XC-72纳米碳载体上,Pd和Pd2Pt纳米粒子的平均粒径分别为54 和49 nm. 电化学测试结果显示,甲酸在Pd/C催化剂上氧化的起始电位和峰电位大大低于Pt/C催化剂,这是由于甲酸在Pd/C和Pt/C催化剂上不同的氧化途径引起的.结果还显示,甲酸在Pd2Pt/C催化剂和Pd/C催化剂上氧化的起始电位相同,而且在024和080 V有两个分别对应于甲酸在Pd和Pt催化剂的氧化, 说明微波合成的Pd/C和Pd2Pt/C催化剂对甲酸的氧化具有良好的电催化性能.  相似文献   

19.
针对饮用水中内分泌干扰物双酚A对环境造成的污染问题,采用UV、H2O2及UV-H2O2联用工艺去除饮用水中双酚A.研究表明,单独的H2O2不能有效氧化去除BPA;单独UV光照射对BPA有一定去除效果,但去除率有限;而UV-H2O2联用工艺对饮用水中BPA具有很好的去除效果.在原水BPA质量质量浓度为1 mg/L左右、UV光强133.9μW/cm2、H2O2投加量10 mg/L和反应时间40 min条件下,BPA的去除率可达到98.3%.UV-H2O2联合工艺降解饮用水中BPA的动力学方程式可表达为ρ=ρe-(0.0002[H2O2]1.0002[UV]0.8048)t,该模型可较好模拟UV-HO联合工艺对BPA的降解效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号