首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
由于除尘灰组分复杂,逐一分析难度较大,因此,采用熔融制样-X射线荧光光谱法(XRF)测定除尘灰中多种组分。实验采用在950℃除C,选择质量比为2∶1的Li2B4O7-LiBO2为熔剂,LiNO3为氧化剂,LiBr溶液为脱模剂进行熔融制样,采用铁矿石标样绘制校准曲线,并通过在含锌矿标样加入ZnO基准试剂的方法扩大了Zn的分析范围,以满足不同类型除尘灰中Zn含量差别的要求。各组分校准曲线的线性相关系数为0.9981~0.9999。实验方法用于测定1个除尘灰中TFe、SiO2、Al2O3、CaO、MgO、MnO、P、Na2O、K2O、Zn,各组分测定结果的相对标准偏差(RSD,n=10)为0.071%~1.7%;按照实验方法测定5个除尘灰样品(包括高炉除尘灰、转炉除尘灰和污泥等)中10种组分,并与化学湿法进行比较,测定结果相符。  相似文献   

2.
芦飞  王瑛 《冶金分析》2015,35(7):67-72
由于不锈钢标渣在市场上很难购买,且熔融制样-X射线荧光光谱(XRF)无法满足炉前不锈钢渣样的快速分析要求,实验利用转炉渣、高炉渣、平炉渣等标准样品和文献方法定值的不锈钢渣生产样品,建立熔融制样-X射线荧光光谱的校准曲线,并用于不锈钢渣样的定值分析,将此定值分析结果用于压片制样-X射线荧光光谱校准曲线的绘制,从而实现不锈钢渣中CaO、SiO2、Al2O3、MnO、MgO、TFe、P2O5、TiO2、Cr2O3和NiO的炉前快速分析。对熔融制样的条件及方法的精密度和准确度均进行了考察,保证了绘制校准曲线用不锈钢渣测定结果的准确性。通过试验确定压片制样-X射线荧光光谱的分析条件为:研磨时间50 s;40 g试样中添加5粒粘合剂;100 kN压力,保压时间15 s进行压片。各组分校准曲线的相关系数均大于0.999。对同一不锈钢渣进行压片制样-XRF的精密度考察,各组分测定结果的相对标准偏差为0.43%~4.6%;准确度验证结果表明,压片制样的测定结果同熔融制样的测定结果一致,但压片制样XRF满足炉前不锈钢渣分析量大、分析速度快的要求。  相似文献   

3.
研究了熔融制样-X射线荧光光谱法测定磁铁矿中7种组分的分析方法。考察了稀释比、硝酸锂氧化剂用量、溴化锂脱模剂用量等因素,在优化条件下进一步选择了熔融温度及熔融时间。按试样与熔剂稀释比为1∶20在1 050 ℃熔融10 min制成玻璃样片,直接用X射线荧光光谱法(XRF)测定磁铁矿中的TFe、CaO、MgO、Al2O3、SiO2、TiO2和S。选择含铁量不同的一组磁铁矿标准样品建立校准曲线,线性相关系数均不小于0.997 4。测定磁铁矿实际样品时,测定结果与化学法一致,相对标准偏差中TFe为0.29%,S为3.4%,其它组分在0.29%~2.5%之间。  相似文献   

4.
采用无水四硼酸锂熔融制样,建立了用波长色散X射线荧光光谱(XRF)法测定三氧化钼中MoO3、Pb、Cu、SiO2、CaO、Fe2O3、K2O 7种组分的方法。以Mo为主要分析元素分别对仪器参数、分析谱线、曲线拟合进行了研究,并详细讨论了熔融法制样条件中熔剂的选择、脱模剂的选择、熔融温度和熔融时间的确定。采用经过多次化学分析的样品作为标准样品绘制校准曲线并选择相应校正程序进行校正。该法用于三氧化钼样品的分析,结果同湿法分析数据相吻合,能满足生产中三氧化钼样品中七种组分分析的需要。  相似文献   

5.
熔融制样-X射线荧光光谱法测定钛铁矿中主次组分   总被引:1,自引:0,他引:1       下载免费PDF全文
使用Li2B4O7和LiBO2混合熔剂(质量比为67∶33),NH4NO3作氧化剂,饱和LiBr溶液作脱模剂,在电加热熔样机上制备玻璃熔片,建立了波长色散X射线荧光光谱法(WD-XRF)测定钛铁矿物中TiO2、TFe、SiO2、A12O3、V2O5、MgO、CaO、S、P、Na2O的分析方法。实验表明,在熔样比例(质量比)为15∶1、熔样温度为1 100 ℃、熔样时间为15 min时熔样效果最佳。在最佳实验条件下,在自制钛铁矿标准样品的含量范围内,各组分的含量与其荧光强度呈线性关系,相关系数在0.995 6~0.999 7之间。采用基本参数法对基体效应进行校正后,平行测定样品10次,所得结果的相对标准偏差除P为9.8%外,其它各组分均不大于1.3%。采用实验方法对钛铁矿样品中各组分进行测定,所得结果和湿法测得值一致。  相似文献   

6.
采用四硼酸锂挂壁制备熔剂坩埚,分散剂溶解并分散硅铁合金样品,蒸干过量水分后加混合熔剂[m(Li2B4O7)∶m(LiBO2)=67∶33]熔融制样,用X射线荧光光谱仪对硅铁合金中Si、Fe、Mn、Al、Ca等元素同时进行测定。本法有效避免了硅铁合金熔融过程中铂金坩埚腐蚀问题,且能够制得适合荧光分析硅铁合金玻璃片,实现了快速而准确地分析硅铁合金中主元素和微量元素。采用本方法分析硅铁合金标准样品,测定值与认定值相符,且主次元素相对标准偏差均能满足硅铁合金测定需要。  相似文献   

7.
熔融制样-X射线荧光光谱法测定蛇纹石中主次组分   总被引:2,自引:0,他引:2       下载免费PDF全文
冯晓军 《冶金分析》2017,37(4):27-32
针对蛇纹石主次组分同时测定中存在的问题,实验以Li2B4O7-LiBO2(m:m=33:67)为熔剂,碘化铵和溴化铵做脱模剂,熔融法制备样品,建立了X射线荧光光谱法(XRF)测定蛇纹石中SiO2、MgO、Fe2O3、Al2O3、CaO等主次成分的方法。优化后的熔融条件如下:稀释比为10:1,加入4 滴400 g/L NH4Br溶液和14 滴400 g/L NH4I溶液做脱模剂,在700 ℃预氧化4 min,再升温到1 050 ℃熔融6 min。选择与蛇纹石矿物相似的滑石、水镁石、非金属矿石物化性能和化学成分分析国家标准物质进行互配,采用基本参数法校正基体效应后,建立校准曲线,解决了蛇纹石标准物质缺失的问题。方法的检出限为80~170 μg/g。对1个东海蛇纹石样品进行精密度考察,测定结果的相对标准偏差(RSD,n=10)均不大于0.70%;采用实验方法对两个蛇纹石样品进行分析,并与行业标准方法HG/T 3575—2006测定结果进行对照,结果相符。  相似文献   

8.
钟坚海 《冶金分析》2018,38(11):24-29
铝矿中主、次及微量成分含量对生产工艺及产品质量具有重要影响,传统的检测方法操作过程繁琐,分析周期长,已难以满足检测需求。实验采用熔融法制样,样品经硝酸锂预氧化后,选择质量比为12∶22的Li2B4O7和LiBO2混合试剂作为熔剂,熔剂与样品比例为10∶1,以NH4I为脱模剂,在1050℃下熔融10min制备熔片。采用有证标准物质及其与高纯Al2O3的人工合成样品为校准样品,对谱线重叠情况进行了考察,并通过变化的理论α系数法校正元素间的吸收增强效应,建立了铝矿中Al2O3、SiO2、Fe2O3、CaO、MgO、P2O5、Na2O、K2O、TiO2、MnO、Ga2O3、ZrO2、V2O5、Cr2O3及S等15种组分的X射线荧光光谱法(XRF)。精密度实验表明,各组分测定结果的相对标准偏差(RSD,n=9)在0.18%~12%之间;对标准样品进行正确度考察,测定值与认定值一致。方法可同时满足铝土矿、叶蜡石、莫来石、矾土、高岭土等多种铝矿的测定。  相似文献   

9.
钒钛磁铁矿中的铁和伴生组分是制造钢铁、合金的主要材料,以往采用多方法结合测定其主次元素,测量周期长,成本高。实验采用混合熔剂熔融制样后,使用X射线荧光光谱法(XRF)测定钒钛磁铁矿中TFe、TiO2、SiO2、Al2O3、CaO、MgO、V2O5、Cr2O3、MnO、K2O、Na2O、P等12种主次组分。为了防止试样对铂-金坩埚的腐蚀,采用预先烧失量处理。称量0.3000g样品与6.000g混合熔剂(m(Li2B4O7)∶m(LiBO2)=67∶33)于1050℃熔融,在熔样过程中添加溴化锂作为脱模剂。选用标准样品绘制校准曲线,采用理论α系数进行计算,校准曲线回归精度(SEE)小于0.3;方法中各组分检出限小于100μg/g。选取同一个样品进行熔融制样,并采用XRF测定其中TFe、TiO2、SiO2、Al2O3、CaO、MgO、V2O5、Cr2O3、MnO、K2O、Na2O、P等组分,测定结果的相对标准偏差(RSD,n=5)符合DZ/T 0130—2006《地质矿产实验室测试质量管理规范》要求。选取4个样品,分别按照实验方法和其他方法(分别采用滴定法、电感耦合等离子体原子发射光谱法、分光光度法等)对上述12种组分进行测定,两种方法所得测定结果差值均符合DZG 93—07《岩石和矿石分析规程》中《钒钛磁铁矿石分析规程》所要求的允许误差范围。  相似文献   

10.
11.
安晓娇  马贤  刘涛  王筠 《冶金分析》2022,42(2):15-20
样品制备是X射线荧光光谱(XRF)分析测试的首要步骤,样品制备成功与否直接影响测试结果准确性。以不锈钢为例,对尺寸不满足直接进行XRF测试的样品,利用镶嵌法进行制样,并采用XRF无标定量方法分析不锈钢中Fe、Cr、Mn、Ni、Cu、Si、Co、V、Mo等元素。利用镶嵌法研究了样品尺寸对测试结果的影响,发现以测试主次成分Fe、Cr、Ni、Mn含量为主要目标时,样品覆盖光斑面积应达到25%以上,测试元素相对误差普遍低于1.5%,微量元素(除Si外)相对误差均在5.2%以内,满足测试要求。通过无标定量法测试不锈钢标准样品,发现方法对不锈钢中主次元素Fe、Cr、Ni均可实现准确测量,相对误差不大于1.6%,微量元素中Si和Cu元素的相对误差在5.0%以内。通过镶嵌法制样无标定量测定实际样品,并与化学法对比,进一步证实XRF可实现对非标准尺寸不锈钢样品的快速测量。镶嵌法制样XRF无标定量方法亦可推广到其他合金产品分析。  相似文献   

12.
采用传统湿法测定铬铁中主次元素含量时操作繁琐、不易掌握;熔融制样-X射线荧光光谱法测定高碳铬铁中铬、硅和磷的含量已有应用。为拓宽X射线荧光光谱(XRF)检测铬铁的应用,采用四硼酸锂熔剂挂壁打底保护铂合金坩埚,以四硼酸锂和碳酸锂做熔剂,用过氧化钡和硝酸钠做氧化剂对样品进行处理,实现了X射线荧光光谱对铬铁中铬、硅、磷、钛的测定。先在高频熔融炉中对样品进行预氧化,经过预氧化处理将样品中的单质元素转化成氧化物,避免高温状态下单质元素与铂形成低温共熔体而腐蚀损坏铂金坩埚,解决了熔融法处理铬铁试样时容易腐蚀坩埚的难点。在最佳实验条件下,采用高碳、中碳、低碳铬铁标准样品和用高纯铁粉和铬铁标样配制的合成标样建立相关校准曲线,铬、硅、磷和钛校准曲线的相关系数均大于0.993。对高碳铬铁标准样品进行精密度考察,4种元素测定结果的相对标准偏差(RSD,n=11)在0.068%~3.9%范围内。对铬铁标准样品进行分析,测定值与认定值相吻合。采用实验方法对铬铁样品中各元素进行测定,所得结果和湿法测得值一致性较好。
  相似文献   

13.
张延新  李京  刘斌  刘政鹏 《冶金分析》2022,42(12):77-82
熔融制样-X射线荧光光谱法测定高碳铬铁的关键点在于玻璃片的制备,需保证样品熔解完全和避免浸蚀铂黄坩埚。实验无需额外制备熔剂坩埚,采用适当比例的四硼酸锂和氧化硼铺底,样品与氢氧化锂、氧化硼、硝酸锶氧化剂混匀,再覆盖以四硼酸锂,通过设置合适的熔融程序,可得到满足分析要求的均质玻璃片。选取4个高碳铬铁标准样品、7个根据标准方法GB/T 4699定值的高碳铬铁样品、2个由高纯铁和高碳铬铁按照一定质量比混合配制的合成高碳铬铁样品共13个样品绘制校准曲线,建立了X射线荧光光谱法(XRF)测定高碳铬铁中铬、硅、磷、钛的方法。方法线性相关系数均大于0.996。将实验方法应用于高碳铬铁标准样品和实际样品分析,结果表明:对于标准样品,实验方法测定值和标准值基本一致;对于实际样品,实验方法测得结果的相对标准偏差(RSD,n=5)为0.15%~3.4%,测定值和标准方法GB/T 4699基本一致。  相似文献   

14.
根据3种不同类型镍矿床选取了20个镍矿石标准物质绘制校准曲线,解决了镍矿石赋存状态的复杂性问题。采用混合熔剂(m(Li2B4O7):m(LiBO2):m(LiF)=4.5:1:0.4)和标准物质以质量比为40:1进行稀释熔融,加入1 g氧化剂LiNO3、6滴加入脱模剂LiBr溶液(1 g/mL),针对Cu含量高的铜镍硫化矿样品在熔融时易脆裂和裂痕的问题,采用加入LiBr溶液后用混合熔剂完全覆盖的方法有效防止Br的挥发,成功地制备出高精度的玻璃熔片。建立了测定镍矿石中NiO、Cr2O3、CuO、PbO、MgO、ZnO、SiO2、Al2O3、MnO、TiO2、CoO、TFe2O3、CaO、K2O、Na2O、P2O516种主次成分的定量分析方法。采用此方法分析GBW07147国家镍矿石标准物质,16种主次成分测定结果的相对标准偏差(RSD)为0.09%~4.5%,对不参加建立校准曲线的GBW07148、GBW07196国家镍矿石标准物质进行分析,分析结果与认定值相符合,满足日常生产任务需要。  相似文献   

15.
彭慧仙 《冶金分析》2015,35(7):20-26
采用高纯氧化物经四硼酸锂和碳酸锂熔融制样制备单一氧化物熔融细粉,称取不同质量单一熔融细粉混合后二次熔融合成各元素含量不同的硬质合金人工标准样品,制作校准曲线,选用经验系数法进行基体校正,建立了无定值标样下X射线荧光光谱法(XRF)测定钨钴或钨镍类钨基硬质合金中钴、镍、铁、铌、钽、铬、钨元素的分析方法。各元素校准曲线线性范围宽,相关系数均大于0.998。对人工配制标准样品的精密度进行考察,结果的相对标准偏差(RSD)小于0.5%;对硬质合金样品进行精密度考察,精密度良好。准确度验证结果表明,测定结果与GB/T 26050-2010的测试结果及化学法测定值吻合。方法的建立解决了硬质合金定值标准样品难于获得的问题。  相似文献   

16.
实验以四硼酸锂挂壁形成熔剂坩埚来确保铂-金坩埚在氧化熔融过程中不被试样腐蚀,以硝酸(1+1)氧化溶解生铁样品,低温蒸发剩余液体,再加入碳酸锂熔融制备玻璃片,建立了X射线荧光光谱法(XRF)测定生铁中硅、锰、磷含量的方法。实验表明,四硼酸锂、碳酸锂和样品的质量比为30∶5∶1,加入3~5mL 300g/L的碘化铵溶液作脱模剂,在1 050℃熔融20min制得的玻璃片强度高、质地均匀、检测面光洁。使用生铁、锰矿石、铁矿石标准物质建立硅、锰、磷校准曲线,校准曲线线性相关系数和回归精度均较好。硅、锰、磷的检出限在1.32~5.60μg/g之间。对同一生铁样品进行精密度考察,各元素测定结果的相对标准偏差(RSD,n=12)介于0.83%~1.8%之间;正确度结果表明,生铁标准样品的测定结果与认定值的误差在国标允许范围内。  相似文献   

17.
张敏  陈赟  龚沂 《冶金分析》2015,35(10):54-59
采用四硼酸锂-偏硼酸锂混合熔剂[m(Li2B4O7)∶m(LiBO2)=67∶33],稀释比为8∶1,脱模剂为10滴300 g/L碘化铵溶液,预氧化温度和时间分别是600 ℃和200 s,熔融温度和时间分别为1 050 ℃和7.5 min的熔样条件,实现了熔融制样-X射线荧光光谱法(XRF)对石灰石和白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、MnO、K2O、P2O5等组分的准确测定。选择石灰石、白云石标准样品及由标准样品人工合成的校准样品进行校准曲线的绘制,各组分的相关系数均可达到0.99以上。采用OXSAS软件提供的AC+MC综合模式进行谱线重叠干扰校正和基体校正,效果良好。选择标准样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)均小于3%。石灰石、白云石标准样品和实际样品的测定结果与认定值或其他方法测定值进行比较,结果基本相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号