首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphate buffer solution has been commonly used in MFC studiesto maintain a suitable pH for electricity-generating bacteria and/or to increase the solution conductivity. However, addition of a high concentration of phosphate buffer in MFCs could be expensive, especially for wastewater treatment. In this study, the performances of MFCs with cloth electrode assemblies (CEA) were evaluated using bicarbonate buffer solutions. A maximum power density of 1550 W/m3 (2770 mW/ m2) was obtained at a current density of 0.99 mA/cm2 using a pH 9 bicarbonate buffer solution. Such a power density was 38.6% higher than that using a pH 7 phosphate buffer at the same concentration of 0.2 M. Based on the quantitative comparison of free proton transfer rates, diffusion rates of pH buffer species, and the current generated, a facilitated proton transfer mechanism was proposed for MFCs in the presence of the pH buffers. The excellent performance of MFCs using bicarbonate as pH buffer and proton carrier indicates that bicarbonate buffer could be served as a low-cost and effective pH buffer for practical applications, especially for wastewater treatment.  相似文献   

2.
Connecting several microbial fuel cell (MFC) units in series or parallel can increase voltage and current; the effect on the microbial electricity generation was as yet unknown. Six individual continuous MFC units in a stacked configuration produced a maximum hourly averaged power output of 258 W m(-3) using a hexacyanoferrate cathode. The connection of the 6 MFC units in series and parallel enabled an increase of the voltages (2.02 V at 228 W m(-3)) and the currents (255 mA at 248 W m(-3)), while retaining high power outputs. During the connection in series, the individual MFC voltages diverged due to microbial limitations at increasing currents. With time, the initial microbial community decreased in diversity and Gram-positive species became dominant. The shift of the microbial community accompanied a tripling of the short time power output of the individual MFCs from 73 W m(-3) to 275 W m(-3), a decrease of the mass transfer limitations and a lowering of the MFC internal resistance from 6.5 +/- 1.0 to 3.9 +/- 0.5 omega. This study demonstrates a clear relation between the electrochemical performance and the microbial composition of MFCs and further substantiates the potential to generate useful energy by means of MFCs.  相似文献   

3.
Power density, electrode potential, coulombic efficiency, and energy recovery in single-chamber microbial fuel cells (MFCs) were examined as a function of solution ionic strength, electrode spacing and composition, and temperature. Increasing the solution ionic strength from 100 to 400 mM by adding NaCl increased power output from 720 to 1330 mW/m2. Power generation was also increased from 720 to 1210 mW/m2 by decreasing the distance between the anode and cathode from 4to 2 cm. The power increases due to ionic strength and electrode spacing resulted from a decrease in the internal resistance. Power output was also increased by 68% by replacing the cathode (purchased from a manufacturer) with our own carbon cloth cathode containing the same Pt loading. The performance of conventional anaerobic treatment processes, such as anaerobic digestion, are adversely affected by temperatures below 30 degrees C. However, decreasing the temperature from 32 to 20 degrees C reduced power output by only 9%, primarily as a result of the reduction of the cathode potential. Coulombic efficiencies and overall energy recovery varied as a function of operating conditions, but were a maximum of 61.4 and 15.1% (operating conditions of 32 degrees C, carbon paper cathode, and the solution amended with 300 mM NaCl). These results, which demonstrate that power densities can be increased to over 1 W/m2 by changing the operating conditions or electrode spacing, should lead to further improvements in power generation and energy recovery in single-chamber, air-cathode MFCs.  相似文献   

4.
Tubular microbial fuel cells for efficient electricity generation   总被引:17,自引:0,他引:17  
A tubular, single-chambered, continuous microbial fuel cell (MFC) that generates high power outputs using a granular graphite matrix as the anode and a ferricyanide solution as the cathode is described. The maximal power outputs obtained were 90 and 66 W m(-3) net anodic compartment (NAC) (48 and 38 W m(-3) total anodic compartment (TAC)) for feed streams based on acetate and glucose, respectively, and 59 and 48 W m(-3) NAC for digester effluent and domestic wastewater, respectively. For acetate and glucose, the total Coulombic conversion efficiencies were 75 +/- 5% and 59 +/- 4%, respectively, at loading rates of 1.1 kg chemical oxygen demand m(-3) NAC volume day(-1). When wastewater was used, of the organic matter effectively removed (i.e., 22% at a loading of 2 kg organic matter m(-3) NAC day(-1)), up to 96% was converted to electricity on a Coulombic basis. The lower overall efficiency of the wastewater-treating reactors is related to the presence of nonreadily biodegradable organics and the interference of alternative electron acceptors such as sulfate present in the wastewater. To further improve MFCs, focus has to be placed on the enhanced conversion of nonrapidly biodegradable material and the better directing of the anode flow toward the electrode instead of to alternative electron acceptors. Also the use of sustainable, open-air cathodes is a critical issue for practical implementation.  相似文献   

5.
One of the greatest challenges for using microbial fuel cells (MFCs) for wastewater treatment is creating a scalable architecture that provides large surface areas for oxygen reduction at the cathode and bacteria growth on the anode. We demonstrate here a scalable cathode concept by showing that a tubular ultrafiltration membrane with a conductive graphite coating and a nonprecious metal catalyst (CoTMPP) can be used to produce power in an MFC. Using a carbon paper anode (surface area Aan = 7 cm2, surface area per reactor volume Aan,s = 25 m2/m3), an MFC with two 3-cm tube cathodes (Acat = 27 cm2, Acat,s = 84 m2/m3) generated up to 8.8 W/m3 (403 mW/m2) using glucose [0.8 g/L in a 50 mM phosphate buffer solution (PBS)], which was only slightly less than that produced using a carbon paper cathode with a Pt catalyst (9.9 W/m3, 394 mW/m2; Acat= 7 cm2, Acat,s= 25 m2/m3). Coulombic efficiencies (CEs) with carbon paper anodes were 25-40% with tube cathodes (CoTMPP), compared to 7-19% with a carbon paper cathode. When a high-surface-area graphite brush anode was used (Aan = 2235 cm2, Aan,s = 7700 m2/m3) with two tube cathodes placed inside the reactor (Acat = 27 cm2, Acas, = 93 m2/m3), the MFC produced 17.7 W/m3 with a CE = 70-74% (200 mM PBS). Further increases in the surface area of the tube cathodes to 54 cm2 (120 m2/m3) increased the total power output (from 0.51 to 0.83 mW), but the increase in volume resulted in a constant volumetric power density (approximately 18 W/m3). These results demonstrate that an MFC design using tubular cathodes coated with nonprecious metal catalysts, and brush anodes, is a promising architecture that is intrinsically scalable for creating larger systems. Further increases in power output will be possible through the development of cathodes with lower internal resistances.  相似文献   

6.
Improving microbial fuel cell (MFC) performance continues to be the subject of research, yet the role of operating conditions, specifically duty cycling, on MFC performance has been modestly addressed. We present a series of studies in which we use a 15-anode environmental MFC to explore how duty cycling (variations in the time an anode is connected) influences cumulative charge, current, and microbial composition. The data reveal particular switching intervals that result in the greatest time-normalized current. When disconnection times are sufficiently short, there is a striking decrease in current due to an increase in the overall electrode reaction resistance. This was observed over a number of whole cell potentials. Based on these results, we posit that replenishment of depleted electron donors within the biofilm and surrounding diffusion layer is necessary for maximum charge transfer, and that proton flux may be not limiting in the highly buffered aqueous phases that are common among environmental MFCs. Surprisingly, microbial diversity analyses found no discernible difference in gross community composition among duty cycling treatments, suggesting that duty cycling itself has little or no effect. Such duty cycling experiments are valuable in determining which factors govern performance of bioelectrochemical systems and might also be used to optimize field-deployed systems.  相似文献   

7.
Although microbial fuel cells (MFCs) generate much lower power densities than hydrogen fuel cells, the characteristics of the cathode can also substantially affect electricity generation. Cathodes used for MFCs are often either Pt-coated carbon electrodes immersed in water that use dissolved oxygen as the electron acceptor or they are plain carbon electrodes in a ferricyanide solution. The characteristics and performance of these two cathodes were compared using a two-chambered MFC. Power generation using the Pt-carbon cathode and dissolved oxygen (saturated) reached a maximum of 0.097 mW within 120 h after inoculation (wastewater sludge and 20 mM acetate) when the cathode was equal size to the anode (2.5 x 4.5 cm). Once stable power was generated after replacing the MFC with fresh medium (no sludge), the Coulombic efficiency ranged from 63 to 78%. Power was proportional to the dissolved oxygen concentration in a manner consistent with Monod-type kinetics, with a half saturation constant of K(DO) = 1.74 mg of O2/L. Power increased by 24% when the cathode surface areas were increased from 22.5 to 67.5 cm2 and decreased by 56% when the cathode surface area was reduced to 5.8 cm2. Power was also substantially reduced (by 78% to 0.02 mW) if Pt was not used on the cathode. By using ferricyanide instead of dissolved oxygen, the maximum power increased by 50-80% versus that obtained with dissolved oxygen. This result was primarily due to increased mass transfer efficiencies and the larger cathode potential (332 mV) of ferricyanide than that obtained with dissolved oxygen (268 mV). A cathode potential of 804 mV (NHE basis) is theoretically possible using dissolved oxygen, indicating that further improvements in cathode performance with oxygen as the electron acceptor are possible that could lead to increased power densities in this type of MFC.  相似文献   

8.
The upflow microbial fuel cell (UMFC) was developed to generate electricity while simultaneously treating wastewater. During a five-month period of feeding a sucrose solution as the electron donor, the UMFC continuously generated electricity with a maximum power density of 170 mW/m2. To achieve this power density, the artificial electron-mediator hexacyanoferrate was required in the cathode chamber. The power density increased with increasing chemical oxygen demand (COD) loading rates up to 2.0 g COD/ L/day after which no further increases in power density were observed, indicating the presence of limiting factors. The overarching limiting factor for the UMFC in this study was the internal resistance, which was estimated as 84 omega at the maximum power density, and restricted the power output by causing a significant decrease in operating potential. Low Coulombic efficiencies varying from 0.7 to 8.1% implied that the electron-transfer bacteria were incapable of converting all of the available organics into electricity, so the excessive substrate created niches for the growth of methanogens. We found that the soluble COD (SCOD) removal efficiencies remained over 90% throughout the operational period, mainly because of methanogenic activity, which accounted for 35 to 58% of the SCOD removed at a loading rate of 1.0 g COD/L/ day. Additionally, transport limitation due to insufficient substrate diffusion was shown by cyclic voltammetry (CV).  相似文献   

9.
10.
The reduction of oxygen at the cathode is one of the major bottlenecks of microbial fuel cells (MFCs). While research so far has mainly focused on chemical catalysis of this oxygen reduction, here we present a continuously wetted cathode with microorganisms that act as biocatalysts for oxygen reduction. We combined the anode of an acetate oxidizing tubular microbial fuel cell with an open air biocathode for electricity production. The maximum power production was 83 +/- 11 W m(-3) MFC (0.183 L MFC) for batch-fed systems (20-40% Coulombic yield) and 65 +/- 5 W m(-3) MFC for a continuous system with an acetate loading rate of 1.5 kg COD m(-3) day(-1) (90 +/- 3% Coulombic yield). Electrochemical precipitation of manganese oxides on the cathodic graphite felt decreased the start-up period with approximately 30% versus a non-treated graphite felt. After the start-up period, the cell performance was similar for the pretreated and non-treated cathodic electrodes. Several reactor designs were tested, and it was found that enlargement of the 0.183 L MFC reactor by a factor 2.9-3.8 reduced the volumetric power output by 60-67%. Biocathodes alleviate the need to use noble or non-noble catalysts for the reduction of oxygen, which increases substantially the viability and sustainability of MFCs.  相似文献   

11.
12.
The performance of oxygen reduction catalysts (platinum, pyrolyzed iron(ll) phthalocyanine (pyr-FePc) and cobalt tetramethoxyphenylporphyrin (pyr-CoTMPP)) is discussed in light of their application in microbial fuel cells. It is demonstrated that the physical and chemical environment in microbial fuel cells severely affects the thermodynamics and the kinetics of the electrocatalytic oxygen reduction. The neutral pH in combination with low buffer capacities and low ionic concentrations strongly affect the cathode performance and limit the fuel cell power output. Thus, the limiting current density in galvanodyanamic polarization experiments decreases from 1.5 mA cm(-2) to 0.6 mA cm(-2) (pH 3.3, E(cathode) = 0 V) when the buffer concentration is decreased from 500 to 50 mM. The cathode limitations are superposed by the increasing internal resistance of the MFC that substantially contributes to the decrease of power output. For example, the maximum power output of a model MFC decreased by 35%, from 2.3 to 1.5 mW, whereas the difference between the electrode potentials (deltaE = E(anode) - E(cathode)) decreased only by 10%. The increase of the catalyst load of pyr-FePc from 0.25 to 2 mg cm(-2) increased the cathodic current density from 0.4 to 0.97 mA cm(-2) (pH 7, 50 mM phosphate buffer). The increase of the load of such inexpensive catalyst thus represents a suitable means to improve the cathode performance in microbial fuel cells. Due to the low concentration of protons in MFCs in comparison to relatively high alkali cation levels (ratio C(Na+,K+)/C(H+) = 5 x E5 in pH 7, 50 mM phosphate buffer) the transfer of alkali ions through the proton exchange membrane plays a major role in the charge-balancing ion flux from the anodic into the cathodic compartment. This leads to the formation of pH gradients between the anode and the cathode compartment.  相似文献   

13.
A novel osmotic microbial fuel cell (OsMFC) was developed by using a forward osmosis (FO) membrane as a separator. The performance of the OsMFC was examined with either NaCl solution or artificial seawater as a catholyte (draw solution). A conventional MFC with a cation exchange membrane was also operated in parallel for comparison. It was found that the OsMFC produced more electricity than the MFC in both batch operation (NaCl solution) and continuous operation (seawater), likely due to better proton transport with water flux through the FO membrane. Water flux from the anode into the cathode was clearly observed with the OsMFC but not in the MFC. The solute concentration of the catholyte affected both electricity generation and water flux. These results provide a proof of concept that an OsMFC can simultaneously accomplish wastewater treatment, water extraction (from the wastewater), and electricity generation. The potential applications of the OsMFC are proposed for either water reuse (linking to reverse osmosis for reconcentration of draw solution) or seawater desalination (connecting with microbial desalination cells for further wastewater treatment and desalination).  相似文献   

14.
Cathode catalysts and binders were examined for their effect on power densities in single chamber, air-cathode, microbial fuel cells (MFCs). Chronopotentiometry tests indicated thatthe cathode potential was only slightly reduced (20-40 mV) when Pt loadings were decreased from 2 to 0.1 mg cm(-2), and that Nafion performed better as a Pt binder than poly(tetrafluoroethylene) (PTFE). Replacing the precious-metal Pt catalyst (0.5 mg cm(-2); Nafion binder) with a cobalt material (cobalt tetramethylphenylporphyrin, CoTMPP) produced slightly improved cathode performance above 0.6 mA cm(-2), but reduced performance (<40 mV) at lower current densities. MFC fed batch tests conducted for 35 cycles (31 days) using glucose showed that replacement of the Nafion binder used for the cathode catalyst (0.5 mg of Pt cm(-2)) with PTFE reduced the maximum power densities (from 400 +/- 10 to 480 +/- 20 mW m(-2) to 331 +/- 3 to 360 +/- 10 mW m(-2)). When the Pt loading on cathode was reduced to 0.1 mg cm(-2), the maximum power density of MFC was reduced on average by 19% (379 +/- 5 to 301 +/- 15 mW m(-2); Nafion binder). Power densities with CoTMPP were only 12% (369 +/- 8 mW m(-2)) lower over 25 cycles than those obtained with Pt (0.5 mg cm(-2); Nafion binder). Power densities obtained using with catalysts on the cathodes were approximately 4 times more than those obtained using a plain carbon electrode. These results demonstrate that cathodes used in MFCs can contain very little Pt, and that the Pt can even be replaced with a non-precious metal catalyst such as a CoTMPP with only slightly reduced performance.  相似文献   

15.
A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 +/- 25 and 84 +/- 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 +/- 27 mW/ m2 (Chitin 20) and 76 +/- 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 +/- 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 +/- 12 to 62 +/- 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.  相似文献   

16.
Effect of cathodic enzymatic decolorization of reactive blue 221 (RB221) on the performance of a dual-chamber microbial fuel cell (MFC) was investigated. Immobilized laccase on the surface of a modified graphite electrode was used in the cathode compartment in order to decolorize the azo dye and enhance the oxygen reduction reaction. First, methylene blue which is an electroactive polymer was electropolymerized on the surface of a graphite bar to prepare the modified electrode. Utilization of the modified electrode with no enzyme in the MFC increased the power density up to 57% due to the reduction of internal resistance from 1000 to 750 Ω. Using the electropolymerized-enzymatic cathode resulted in 65% improvement of the power density and a decolorization efficiency of 74%. Laccase could act as a biocatalyst for oxygen reduction reaction along with catalyzing RB221 decolorization. Treatment of RB221 with immobilized laccase reduced its toxicity up to 5.2%. Degradation products of RB221 were identified using GC-MS, and the decomposition pathway was proposed. A discussion was also provided as to the mechanism of dye decolorization on the enhancement of the MFC performance.  相似文献   

17.
Biological denitrification in microbial fuel cells   总被引:20,自引:0,他引:20  
Microbial fuel cells (MFCs) that remove carbon as well as nitrogen compounds out of wastewater are of special interest for practice. We developed a MFC in which microorganisms in the cathode performed a complete denitrification by using electrons supplied by microorganisms oxidizing acetate in the anode. The MFC with a cation exchange membrane was designed as a tubular reactor with an internal cathode and was able to remove up to 0.146 kg NO(3-)-N m(-3) net cathodic compartment (NCC) d(-1) (0.080 kg NO(3-)-N m(-3) total cathodic compartment d(-1) (TCC)) at a current of 58 A m(-3) NCC (32 A m(-3) TCC) and a cell voltage of 0.075 V. The highest power output in the denitrification system was 8 W m(-3) NCC (4 W m(-3) TCC) with a cell voltage of 0.214 V and a current of 35 A m(-3) NCC. The denitrification rate and the power production was limited bythe cathodic microorganisms, which only denitrified significantly at a cathodic electrode potential below 0 V versus standard hydrogen electrode (SHE). This is, to our knowledge, the first study in which a MFC has both a biological anode and cathode performing simultaneous removal of an organic substrate, power production, and complete denitrification without relying on H2-formation or external added power.  相似文献   

18.
The versatility of bioelectrochemical systems (BESs) makes them promising for various applications, and good combinations could make the system more applicable and economically effective. An integrated BES called microbial electrolysis and desalination cell (MEDC) was developed to concurrently desalinate salt water, produce hydrogen gas, and potentially treat wastewater. The reactor is divided into three chambers by inserting a pair of ion exchange membranes, with each chamber serving one of the three functions. With an added voltage of 0.8 V, lab scale batch study shows the MEDC achieved the highest H(2) production rate of 1.5 m(3)/m(3) d (1.6 mL/h) from the cathode chamber, while also removing 98.8% of the 10 g/L NaCl from the middle chamber. The anode recirculation alleviated pH and high salinity inhibition on bacterial activity and further increased system current density from 87.2 to 140 A/m(3), leading to an improved desalination rate by 80% and H(2) production by 30%. Compared to slight changes in desalination, H(2) production was more significantly affected by the applied voltage and cathode buffer capacity, suggesting cathode reactions were likely affected by the external power supply in addition to the anode microbial activity.  相似文献   

19.
Microbial fuel cells (MFCs) are emerging as a novel technology with a great potential to reduce the costs of wastewater treatment. Their most studied application is organic carbon removal. One of the parameters commonly used to quantify the performance of these cells is the Coulombic efficiency, i.e., the electron recovery as electricity from the removed substrate. However, the "inefficiencies" of the process have never been fully identified. This study presents a method that uses the combination of electrochemical monitoring, chemical analysis, and a titration and off-gas analysis (TOGA) sensor to identify and quantify the sources of electron loss. The method was used successfully to close electron, carbon, and proton balances in acetate and glucose fed microbial fuel cells. The method revealed that in the case that a substrate is loaded as pulses carbon is stored inside the cells during initial high substrate conditions and consumed during starvation, with up to 57% of the current being generated after depletion of the external carbon source. Nile blue staining of biomass samples revealed lipophilic inclusions during high substrate conditions, thus confirming the storage of polymeric material in the bacterial cells. The method also allows for indirect measurement of growth yields, which ranged from 0 to 0.54 g biomass-C formed per g substrate-C used, depending on the type of substrate and the external resistance of the circuit.  相似文献   

20.
Due to the excellent proton conductivity of Nafion membranes in polymer electrolyte membrane fuel cells (PEMFCs), Nafion has been applied also in microbial fuel cells (MFCs). In literature, however, application of Nafion in MFCs has been associated with operational problems. Nafion transports cation species other than protons as well, and in MFCs concentrations of other cation species (Na+, K+, NH4+, Ca2+, and Mg2+) are typically 10(5) times higher than the proton concentration. The objective of this study, therefore, was to quantify membrane cation transport in an operating MFC and to evaluate the consequences of this transport for MFC application on wastewaters. We observed that during operation of an MFC mainly cation species other than protons were responsible for the transport of positive charge through the membrane, which resulted in accumulation of these cations and in increased conductivity in the cathode chamber. Furthermore, protons are consumed in the cathode reaction and, consequently, transport of cation species other than protons resulted in an increased pH in the cathode chamber and a decreased MFC performance. Membrane cation transport, therefore, needs to be considered in the development of future MFC systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号